Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera

Cone.

 3° ano/E.M.

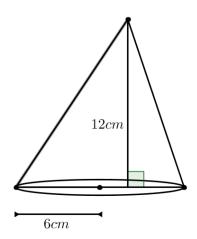
Professores Cleber Assis e Tiago Miranda

Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone.

1 Exercícios Introdutórios

Exercício 1. Determine a área total e o volume de um cone reto de raio da base medindo 3cm e altura medindo 4cm.

Exercício 2. Determine o volume do cone oblíquo da figura.



Exercício 3. Determine a altura de um cone equilátero cujo raio da base mede 12*cm*.

Exercício 4. Determine o volume de um cone reto de raio da base medindo 4*cm* e com ângulo determinado pela altura e geratriz medindo 30°.

2 Exercícios de Fixação

Exercício 5. Um cone é construído a partir de uma semicircunferência de raio igual a 12*cm*. Determine o volume deste cone.

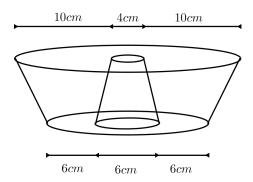
Exercício 6. Um cone de revolução é obtido pela rotação de um triângulo retângulo, de lados 3*cm*, 4*cm* e 5*cm*, tendo como eixo a reta suporte do lado de 4*cm*. Determine seu volume e sua área lateral.

Exercício 7. Determine o volume e a área total de um cone reto inscrito em um cubo de 10*cm* de aresta.

Exercício 8. Um copo de plástico tem o formato de um tronco de cone reto. Se o diâmetro da base menor mede 4cm, o da base maior 6cm e a altura 10cm, qual sua capacidade em $m\ell$?

Exercício 9. Um chapéu de aniversário tem formato cônico, de diâmetro da base medindo 10cm e altura medindo 15cm. Determine a quantidade de papel utilizada para sua confecção.

Exercício 10. Uma fôrma de bolo, de 10*cm* de altura, é formada por dois troncos de cone, conforme a figura. Determine a quantidade máxima de massa líquida de bolo que pode ser colocada na forma, se esta massa deve ocupar apenas 80% de sua capacidade, pois deve existir uma margem para que o bolo cresça.

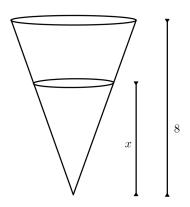


3 Exercícios de Aprofundamento e de Exames

Exercício 11. Um cone circular reto é seccionado por um plano paralelo à sua base a $\frac{2}{3}$ de seu vértice. Se chamarmos V o volume do cone, então o volume do tronco de cone resultante vale:

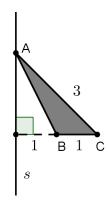
- a) $\frac{8V}{27}$.
- b) $\frac{2V}{3}$.
- c) $\frac{4V}{9}$.
- d) $\frac{19V}{27}$.

Exercício 12. Um copo tem a forma de um cone com altura 8*cm* e raio da base 3*cm*. Queremos enchê-lo com quantidades iguais de água e suco de laranja. Para que isso seja possível, a altura *x* atingida pelo primeiro líquido deve ser:

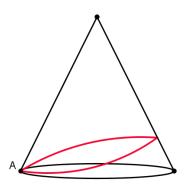


- a) $\frac{8}{3}$ *cm*.
- b) 6cm.
- c) 4cm.
- d) $4\sqrt{3}cm$.
- e) $4\sqrt[3]{4}cm$.

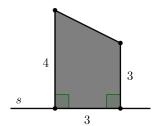
Exercício 13. O triângulo ABC sofre uma rotação sobre o eixo s da figura. Determine o volume do sólido gerado.



Exercício 14. Seja um cone cujo raio é $\frac{g}{6}$, ou seja, $\frac{1}{6}$ da geratriz. Tomando-se o ponto A da circunferência da base e passando um barbante ao redor do cone com início e fim no ponto A, determine o menor comprimento deste barbante.



Exercício 15. Ao girarmos o trapézio abaixo pelo eixo *s*, determinamos um sólido de revolução. Determine seu volume e sua área total.



Respostas e Soluções.

1. Pelo triângulo retângulo formado pela altura, raio da base e geratriz, temos:

$$g^{2} = r^{2} + h^{2}$$

$$g^{2} = 3^{2} + 4^{2}$$

$$g^{2} = 25$$

$$g = 5.$$

Dessa forma, $V = \frac{\pi r^2 h}{3} = \frac{\pi \cdot 3^2 \cdot 4}{3} = 12\pi cm^3 \text{ e } A_t = \pi r^2 + \pi rg = \pi \cdot 3^2 + \pi \cdot 3 \cdot 5 = 24\pi cm^2.$

2.
$$V = \frac{\pi \cdot 6^2 \cdot 12}{3} = 144\pi cm^3$$
.

3. Se o cone é equilátero, então sua secção meridiana é um triângulo equilátero, onde a geratriz tem a mesma medida do diâmetro da base, ou seja, 24*cm*. Aplicando o Teorema de Pitágoras no triângulo formado pela geratriz, raio da base e altura, temos:

$$g^{2} = r^{2} + h^{2}$$

$$24^{2} = 12^{2} + h^{2}$$

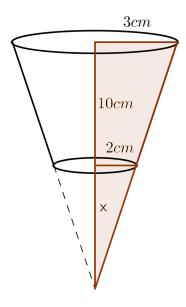
$$h^{2} = 24^{2} - 12^{2}$$

$$h^{2} = (24 + 12)(24 - 12)$$

$$h = 12\sqrt{3}cm$$

- **4.** Se o ângulo entre a altura e a geratriz mede 30°, no triângulo retângulo formado pela altura, geratriz e raio da base, então tg $30^\circ = \frac{4}{h}$, segue que $h = 4\sqrt{3}cm$. Então seu volume é $V = \frac{\pi \cdot 4^2 \cdot 4\sqrt{3}}{3} = \frac{64\sqrt{3}\pi}{3}cm^3$.
- 5. Quando montamos o cone a partir desta semicircunferência, temos que a geratriz do cone é igual ao raio da semicircunferência, ou seja, 12cm. Além disso, o comprimento do arco da semicircunferência é igual ao comprimento da circunferência, de raio r, da base do cone, ou seja, $2\pi r = \frac{2\pi \cdot 12}{2}$, segue que r = 6cm. Pelo triângulo retângulo formado pela geratriz, altura e raio da base, temos $h^2 + 6^2 = 12^2$, segue que $h = 6\sqrt{3}cm$. Concluímos então o volume do cone é $V = \frac{\pi \cdot 6^2 \cdot 6\sqrt{3}}{3} = 72\sqrt{3}\pi cm^3$.
- 6. Se o eixo de rotação é a reta que contém o cateto de lado 4cm, então, a altura do cone gerada é 4cm e o raio da base é o outro cateto, ou seja, 3cm. Temos então que seu volume é $V=\frac{\pi \cdot 3^2 \cdot 4}{3}=12\pi cm^3$ e sua área lateral é $A_l=\pi \cdot 3 \cdot 5=15\pi cm^2$.

- 7. Se o cone está inscrito em um cubo de 10cm de aresta, então sua altura mede 10cm e o seu diâmetro da base também mede 10cm. Aplicando o Teorema de Pitágoras ao triângulo retângulo formado pela altura, geratriz e raio da base, obtemos $g = 5\sqrt{5}cm$. Temos então que seu volume é $V = \frac{\pi \cdot 5^2 \cdot 10}{3} = \frac{250\pi}{3}cm^3$ e sua área total é $A_t = \pi \cdot 5^2 + \pi \cdot 5 \cdot 5\sqrt{5} = 25\pi(1+\sqrt{5})cm^2$.
- 8. Inicialmente, vamos observar a figura.



Reconstruindo o cone que deu origem ao tronco, encontramos uma semelhança de triângulos:

$$\frac{3}{10+x} = \frac{2}{x}$$
$$2(10+x) = 3x$$
$$x = 20$$

Para calcular o volume do tronco, basta subtrairmos o volume do cone maior pelo volume do cone menor:

$$V_t = V_1 - V_2$$

$$= \frac{\pi \cdot 3^2 \cdot 30}{3} - \frac{\pi \cdot 2^2 \cdot 20}{3}$$

$$= \frac{270\pi - 80\pi}{3}$$

$$= \frac{190\pi}{3}.$$

Temos então que o volume é aproximadamente $199cm^3$, ou seja, $199m\ell$.

9. Pelo triângulo retângulo formado pela geratriz, raio da base e altura, temos $g^2=5^2+15^2$, segue que $g=5\sqrt{10}cm$. Então a quantidade de papel gasto, que é a área lateral, é $A_l=\pi\cdot 5\cdot 5\sqrt{10}=25\sqrt{10}\pi cm^2$.

- 10. Incialmente vamos calcular o volume do tronco de cone maior. "Reconstruindo" o cone truncado que deu origem ao tronco, temos um cone maior com altura H e um menor com altura (H-10). Por semelhança de triângulos, $\frac{H}{H-10} = \frac{12}{9}, \text{ segue que } H = 40 \text{cm}. \text{ Basta agora subtrair os volumes destes cones para encontrarmos o volume do tronco, ou seja, <math>V_t = \frac{\pi \cdot 12^2 \cdot 40}{3} \frac{\pi \cdot 9^2 \cdot 30}{3} = 1110 \pi \text{cm}^3.$ De forma análoga, encontramos o volume do tronco menor igual a $\frac{190\pi}{3} \text{cm}^3. \text{ Lembrando que apenas } 80\% \text{ da capacidade deve ser usada, temos que o volume de massa líquida é <math>0,8(1110\pi \frac{190\pi}{3}) \cong 2,63\ell.$
- 11. (Extraído da UnB-DF) Chamando o volume do cone menor de v e a altura do cone maior de H, temos que $\frac{V}{v} = \left(\frac{H}{2H}\right)^3$, segue que $v = \frac{8V}{27}$. Então o volume do

$$v = \left(\frac{2H}{3}\right)^{V}$$
 $V = V - v = \frac{19V}{27}$. Resposta D.

12. (Extraído da Fuvest-SP) Como o volume do primeiro líquido deve ser a metade, então temos:

$$\frac{V}{\frac{V}{2}} = \left(\frac{8}{x}\right)^3$$

$$2 = \frac{2^9}{x^3}$$

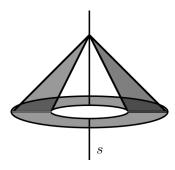
$$x^3 = 2^8$$

$$x = 4\sqrt[3]{4}$$

Resposta E.

13. (Extraído da Vídeo Aula) Pela rotação do triângulo, o sólido gerado será uma espécie de "casca de cone", sendo um cone de geratriz 3 e raio da base 2 e, portanto, altura $\sqrt{5}$, e, deste, "retirado" um outro cone de raio da base 1 e altura também $\sqrt{5}$. Temos então que o volume V do sólido gerado é:

$$V = \frac{\pi \cdot 2^2 \cdot \sqrt{5}}{3} - \frac{\pi \cdot 1^2 \cdot \sqrt{5}}{3}$$
$$= \frac{4\sqrt{5}\pi - \sqrt{5}\pi}{3}$$
$$= \frac{3\sqrt{5}\pi}{3}$$
$$= \sqrt{5}\pi.$$

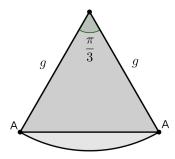


14. Se planificarmos a lateral do cone, teremos um setor circular, cujas extremidades do arco deste setor serão ambas o ponto A. Como a menor distância entre dois pontos no plano é um segmento reto, a corda que liga estas extremidades do arco deste setor será o menor comprimento do barbante. Além disso a área lateral do cone é $A_l = \pi rg = \frac{g^2\pi}{6}$. Esta é também a área do setor circular, ou seja, $A_s = \frac{\alpha\pi g^2}{2\pi} = \frac{\alpha g^2}{2}$, pois o raio do setor circular é g. Igualando as duas áreas, temos:

$$\frac{\alpha g^2}{2} = \frac{g^2 \pi}{6}$$

$$\alpha = \frac{\pi}{3}.$$

Como o ângulo central do setor mede $\frac{\pi}{3}$, então o triângulo formado pelos raios do setor e a corda é equilátero, ou seja, o menor comprimento do barbante é a medida da geratriz do cone.

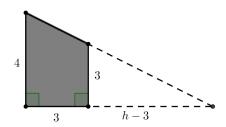


15. O sólido gerado é um tronco de cone de raios das bases 3 e 4, além de altura 3. Reconstruindo o triângulo que foi truncado para originar o trapézio, vamos chamar um cateto de h, já que o outro é 4. Por semelhança de triângulos, temos:

$$\frac{h}{h-3} = \frac{4}{3}$$

$$4h-12 = 3h$$

$$h = 12$$



Se giramos este triângulo retângulo, como foi girado o trapézio, teremos dois cones, sendo um de raio da base 4 e outro de raio da base 3. O volume do tronco em questão é a diferença entre os volumes destes dois cones, ou seja:

$$V_t = V_1 - V_2$$

$$= \frac{\pi \cdot 4^2 \cdot 12}{3} - \frac{\pi \cdot 3^2 \cdot 9}{3}$$

$$= 64\pi - 27\pi$$

$$= 37\pi.$$

Para o cálculo da área do tronco, basta somarmos as áreas das bases e a área lateral, que é o resultado da diferença entre as áreas laterais dos dois cones gerados anteriormente, cujas geratrizes medem $\sqrt{144+16}=4\sqrt{10}$ e $\sqrt{81+9}=3\sqrt{10}$. Temos então:

$$A_t = A_{b_1} + A_{b_2} + A_l$$

= $\pi \cdot 4^2 + \pi \cdot 3^2 + \pi \cdot 4 \cdot 4\sqrt{10} + \pi \cdot 3 \cdot 3\sqrt{10}$
= $25\pi + 25\sqrt{10}\pi$.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com