Função Logarítmica

Logaritmo como uma Função

 1° ano E.M.

Professores Cleber Assis e Tiago Miranda

1 Exercícios Introdutórios

Exercício 1. Seja a função $f: \mathbb{R}_+^* \to \mathbb{R}$, sendo $f(x) = \log_2 x$, determine:

- a) f(1).
- b) f(2).
- c) f(8).
- d) $f(2^k)$.

Exercício 2. Qual das funções abaixo é decrescente?

- a) $f(x) = \log_3 x$.
- b) $g(x) = \log_{\sqrt{2}} x$.
- c) $h(x) = \log_{\frac{\sqrt{5}}{2}} x$.
- d) $p(x) = \log_{\frac{1}{\pi}} x$.
- e) $q(x) = \log_2(x 1)$.

Exercício 3. Determine a soma das raízes da função:

$$f(x) = \log_4(-x^2 + 10x - 15).$$

Exercício 4. Determine o domínio das funções abaixo.

- a) $f(x) = \log_2(3x 9)$.
- b) $g(x) = \log_{(x-4)} 4$.
- c) $p(x) = \log_4(x^2 7x)$.

Exercício 5. A raiz da função $f(x) = \log_3(2x + 7)$ é:

- a) -4.
- b) 4.
- c) 3.
- d) -3.
- e) 2.

Exercício 6. O domínio da função $f(x) = \log_3(x^2 - 9)$ é:

- a) [-3,3].
- b) [0,3].
- c) $\mathbb{R} [0,3]$.
- d) $\mathbb{R} [-3, 3]$.
- e) Ø.

Exercício 7. Resolva o sistema:

$$\begin{cases} x + y = 10 \\ \log_2 x + \log_2 y = 4 \end{cases}.$$

2 Exercícios de Fixação

Exercício 8. Dadas as funções $f(x) = \log_3(3x)$ e $g(x) = \log_3\left(\frac{1}{x}\right)$, determine:

- a) f(3).
- b) g(81).
- c) $g \circ f(9)$.

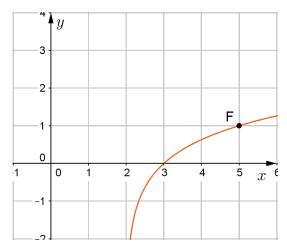
Exercício 9. Esboce o gráfico das funções abaixo.

- a) $f(x) = \log_5 x$.
- b) $g(x) = \log_{\frac{1}{2}} x$.
- c) $h(x) = \log_{\frac{1}{2}}(x+2)$.

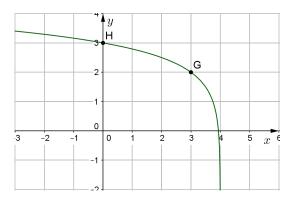
Exercício 10. Determine o domínio e o conjunto imagem das funções abaixo.

- a) $f(x) = \log(x 1)$.
- b) $g(x) = \log_{\frac{1}{2}}(x+2)$.
- c) $h(x) = 3 + \log_3(2x 1)$.

Exercício 11. Seja a função $f(x) = \log_3(a + x)$ e o ponto F(5,1) pertencente à f. Determine o valor de a.



Exercício 12. Seja a função $f(x) = a + \log_4(b - x)$, onde a e b são números reais. Se os pontos G(3,2) e H(0,3) pertencem à f, determine os valores de a e b.



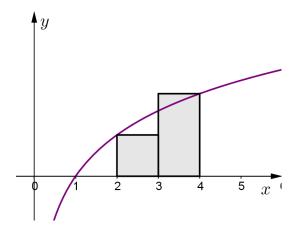
Exercício 13. Se $f: A \to B$ é uma função bijetora, sendo $f(x) = 3 + \log(x - 2)$, determine $f^{-1}(x)$.

Exercício 14. Sejam f, g e $f \circ g$, funções definidas em seus respectivos domínios, sendo $f(x) = 3 + 2 \log x$ e $f \circ g(x) = 2x - 1$. Determine a lei de associação da função g.

Exercício 15. Sejam f, g e $f \circ g$, funções definidas em seus respectivos domínios, sendo $g(x) = 2^{x-1}$ e $f \circ g(x) = 5 - 2x$. Determine a lei de associação da função f.

3 Exercícios de Aprofundamento e de Exames

Exercício 16. A curva abaixo representa o gráfico da função $\log_2 x$, com x > 0. Calcule a soma das áreas dos retângulos destacados.



Exercício 17. As populações de duas cidades, A e B, são dadas em milhares de habitantes pelas funções $A(t) = \log_8(1+t)^6$ e $B(t) = \log_2(4t+4)$, em que a variável t representa o tempo em ano.

- a) Qual é a população de cada uma das cidades nos instantes $t=1~{\rm e}~t=7?$
- b) Após certo instante t, a população de uma dessas cidades é sempre maior que a da outra. Determinar esse instante t e especificar a cidade cuja população é a maior após esse instante.

Exercício 18. As populações A e B de duas cidades são determinadas em milhares de habitantes pelas funções: $A(t) = \log_4(2+t)^5$ e $B(t) = \log_2(2t+4)^2$, nas quais a variável t representa o tempo em anos. Essas cidades terão o mesmo número de habitantes no ano t, que é igual a:

- a) 6.
- b) 8.
- c) 10.
- d) 12.
- e) 14.

Exercício 19. Os átomos de um elemento químico radioativo têm a tendência natural de se desintegrar (emitindo partículas e transformando-se em outro elemento). Assim, com o passar do tempo, a quantidade original desse elemento diminui. Suponhamos que certa quantidade de um elemento radioativo, com inicialmente m_0 gramas de massa, decomponha-se conforme a equação matemática $m(t) = m_0 \cdot 10^{-\frac{t}{70}}$, em que m(t) é a quantidade de massa radioativa restante no tempo t (em ano). Usando a aproximação $\log 2 = 0,3$, determine:

- a) log 8.
- b) Quantos anos demorará para que esse elemento se decomponha até atingir um oitavo da massa inicial.

Exercício 20. Terremotos são eventos naturais que não têm relação com eventos climáticos extremos, mas podem ter consequências ambientais devastadoras, especialmente quando seu epicentro ocorre no mar, provocando *tsunamis*. Uma das expressões para se calcular a violência de um terremoto na escala Richter é:

$$M = \frac{2}{3} \cdot \log_{10} \left(\frac{E}{E_o} \right),$$

onde M é a magnitude do terremoto, E é a energia liberada (em joules) e $E_o=10^{4,5}$ joules é a energia liberada por um pequeno terremoto usado como referência. Qual foi a ordem de grandeza da energia liberada pelo terremoto do Japão de 11 de março de 2011, que atingiu magnitude 9 na escala Richter?

- a) 10^{14} joules.
- b) 10¹⁶ joules.
- c) 10^{17} joules.
- d) 10¹⁸ joules.
- e) 10¹⁹ joules.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com

Respostas e Soluções.

1.

a)
$$f(1) = \log_2 1 = 0$$
.

b)
$$f(2) = \log_2 2 = 1$$
.

c)
$$f(8) = \log_2 8 = 3$$
.

d)
$$f(2^k) = \log_2 2^k = k$$
.

2. D.

3.

$$\log_4(-x^2 + 10x - 15) = 0$$

$$-x^2 + 10x - 15 = 4^0$$

$$-x^2 + 10x - 15 = 1$$

$$-x^2 + 10x - 16 = 0$$

$$x^2 - 10x + 16 = 0$$

$$x_1 = 2$$

$$x_2 = 8.$$

Portanto, a soma das raízes é 2 + 8 = 10.

4.

a)
$$3x - 9 > 0$$
, segue que $x > 3$. $D_f = (3, +\infty)$.

b)
$$x - 4 \neq 1$$
 e $x - 4 > 0$, segue que $x \neq 5$ e $x > 4$. $D_g = (4, +\infty) - \{5\}$.

c)
$$x^2 - 7x > 0$$
, segue que $x < 0$ ou $x > 7$. $D_p = (-\infty, 0) \cup (7, +\infty)$.

5.

$$\log_3(2x+7) = 0$$

$$2x+7 = 3^0$$

$$2x+7 = 1$$

$$2x = -6$$

$$x = -3$$

Resposta D.

6. Se $x^2 - 9 > 0$, então x < -3 ou x > 3. Portanto, o domínio de f é $D_f = (-\infty, -3) \cup (3, +\infty)$. Resposta D.

7. Pela segunda equação temos $\log_2(xy) = 4$, donde xy = 16 e, substituindo a primeira equação, chegamos a x(10 - x) = 16, que é o mesmo que $x^2 - 10x + 16 = 0$, cujas raízes são $x_1 = 2$ e $x_2 = 8$ e, consequentemente, $y_1 = 8$ e $y_2 = 2$. Portanto, $S = \{(2,8), (8,2)\}$.

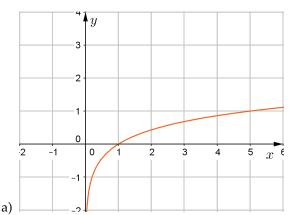
8.

a)
$$f(3) = \log_3(3 \cdot 3) = \log_3 9 = 2$$
.

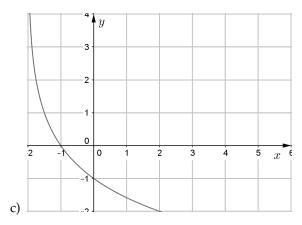
b)
$$g(81) = \log_3\left(\frac{1}{81}\right) = \log_3 3^{-4} = -4.$$

c)
$$g \circ f(9) = g(f(9)) = g(\log_3 27) = g(3) = \log_3 3^{-1} = -1.$$

9.



b) 2 3 4 5 x



10.

a)
$$D_f = (1, +\infty) \text{ e } Im_f = \mathbb{R}.$$

b)
$$D_g = (-2, +\infty)$$
 e $Im_g = \mathbb{R}$.

c)
$$D_h = \left(\frac{1}{2}, +\infty\right) e Im_h = \mathbb{R}.$$

11. Se F(5,1) pertence a f, então:

$$\log_3(a+5) = 1$$

$$a+5 = 3^1$$

$$a+5 = 3$$

$$a = -2$$

12. Substituindo G(3,2), temos $a+\log_4(b-3)=2$, segue que $b-3=4^{2-a}$ (I) e, substituindo H(0,3), temos $a+\log_4(b-0)=3$, segue que $b=4^{3-a}$, donde, substituindo em (I), chegamos:

$$4^{3-a} - 3 = 4^{2-a}$$

$$\frac{4^3}{4^a} - \frac{4^2}{4^a} = 3$$

$$4^3 - 4^2 = 3 \cdot 4^a$$

$$64 - 16 = 3 \cdot 4^a$$

$$48 = 3 \cdot 4^a$$

$$4^a = 16$$

$$a = 2.$$

Se a = 2, então $b = 4^{3-2} = 4$.

13. Para determinarmos a inversa de f, temos:

$$x = 3 + \log(y - 2)$$

$$x - 3 = \log(y - 2)$$

$$10^{x-3} = y - 2$$

$$y = 10^{x-3} + 2.$$

Portanto, $f^{-1}(x) = 10^{x-3} + 2$.

14.

$$f(x) = 3 + 2 \log x$$

$$f(g(x)) = 3 + 2 \log(g(x))$$

$$2x - 1 = 3 + 2 \log(g(x))$$

$$2x - 4 = 2 \log(g(x))$$

$$x - 2 = \log(g(x))$$

$$g(x) = 10^{x-2}$$

15.

$$f(g(x)) = 5 - 2x$$

$$f(2^{x-1}) = 5 - 2x$$

$$f(2^{\log_2 2x - 1}) = 5 - 2(\log_2 2x)$$

$$f(2^{\log_2 x}) = 5 - 2 - 2 \cdot \log_2 x$$

$$f(x) = 3 - 2\log_2 x.$$

16. (Extraído da UFPE) As alturas dos retângulos são $\log_2 2 = 1$ e $\log_2 4 = 2$. Portanto, a soma das áreas é $1 \cdot 1 + 1 \cdot 2 = 1 + 2 = 3$.

- 17. (Extraído da Unicamp-SP)
- a) $A(1) = \log_8 2^6 = \log_8 8^2 = 2$ (dois mil habitantes); $B(1) = \log_2(4+4) = 3$ (três mil habitantes); $A(7) = \log_8 8^6 = 6$ (seis mil habitantes); $B(7) = \log_2 32 = 5$ (cinco mil habitantes).
- b) Após 1 ano, a população de A é menor, mas após 7 anos, a população de A é maior, então, em algum momento t, a

população de A é igual à população de B e, a partir deste momento, A passa a ser maior. Temos, assim:

$$\log_8(1+t)^6 = \log_2(4t+4)$$

$$\log_2(1+t)^2 = \log_2(4t+4)$$

$$(1+t)^2 = 4t+4$$

$$1+2t+t^2 = 4t+4$$

$$t^2-2t-3 = 0$$

$$t_1 = -1$$

$$t_2 = 3.$$

Portanto, a partir de 3 anos, a população de *A* passa a ser maior que a população de *B*.

18. (Extraído da UFPA)

$$\begin{array}{rcl} \log_4(2+t)^5 & = & \log_2(2t+4)^2 \\ \log_4(2+t)^5 & = & \log_4(2t+4)^4 \\ (t+2)^5 & = & (2t+4)^4 \\ (t+2)^5 & = & 2^4 \cdot (t+2)^4 \\ t+2 & = & 2^4 \\ t & = & 14. \end{array}$$

Resposta E.

19. (Extraído da VUNESP)

a)
$$\log 8 = \log 2^3 = 3 \log 2 = 3 \cdot 0.3 = 0.9.$$

b)

$$m(t) = m_0 \cdot 10^{-\frac{t}{70}}$$

$$\frac{1}{8} \cdot m_0 = m_0 \cdot 10^{-\frac{t}{70}}$$

$$2^{-3} = 10^{-\frac{t}{70}}$$

$$\log 2^{-3} = \log 10^{-\frac{t}{70}}$$

$$(-3) \cdot \log 2 = -\frac{t}{70}$$

$$(-3) \cdot 0,3 = -\frac{t}{70}$$

$$t = 0,9 \cdot 70$$

$$t = 63.$$

Portanto, depois de 63 anos este elemento irá se decompor à oitava parte.

20. (Extraído da UPE) Se M = 9, temos:

$$M = \frac{2}{3} \cdot \log_{10} \left(\frac{E}{E_o} \right)$$

$$9 = \frac{2}{3} \cdot \log_{10} \left(\frac{E}{E_o} \right)$$

$$\frac{27}{2} = \log_{10} \left(\frac{E}{E_o} \right)$$

$$10^{\frac{27}{2}} = \frac{E}{10^{4.5}}$$

$$10^{13.5+4.5} = E$$

$$E = 10^{18}.$$

Resposta D.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com