Módulo de Trigonometria

Radiano, Círculo Trigonométrico e Congruência de Arcos

1^a série E.M.

Trigonometria Radiano, Círculo Trigonométrico e Congruência de Arcos.

1 Exercícios Introdutórios

Exercício 1. Se o comprimento de uma circunferência é 2π cm, determine o comprimento de um arco, nesta circunferência, de

- a) 180°
- b) 90°
- c) 45°
- d) 60°
- e) 30°
- f) 120°
- g) 270°

Exercício 2. Expresse em radianos:

- a) 30° .
- b) 45°.
- c) 60° .
- d) 120° .
- e) 135° .
- f) 150°.
- g) 225° .
- h) 300°.

Exercício 3. Expresse em graus:

- a) 2π rad.
- b) π rad.
- c) $\frac{\pi}{2}$ rad.
- d) $\frac{\pi}{4}$ rad.
- e) $\frac{\pi}{6}$ rad.
- f) $\frac{3\pi}{4}$ rad.
- g) $\frac{7\pi}{6}$ rad.
- h) $\frac{11\pi}{6}$ rad.

Exercício 4. Determine a expressão geral dos arcos côngruos aos arcos de:

- a) 30° .
- b) 60°.
- c) 135°.
- d) π rad.
- e) $\frac{\pi}{4}$ rad.

Exercício 5. Determine a primeira determinação positiva dos arcos:

- a) 400° .
- b) 900°.
- c) 1500° .
- d) -860° .
- e) $\frac{19\pi}{4}$ rad.
- f) $\frac{81\pi}{6}$ rad.

2 Exercícios de Fixação

Exercício 6. Determine, em radianos, a medida do ângulo central correspondente a um arco de 12cm em uma circunferência de 4cm de raio.

Exercício 7. Determine o comprimento, em cm, de um arco correspondente a um ângulo central de 60° em uma circunferência de 8cm de raio.

Exercício 8. Determine a medida, em graus, do menor ângulo formado pelos ponteiros das horas e dos minutos de um relógio analógico às:

- a) 5h.
- b) 9h30min.
- c) 11h40min.
- d) 1h20min.
- e) 3h25min.

Exercício 9. Um pêndulo de 50cm, descreve um movimento no qual suas posições extremas formam um ângulo de 45° . Determine o comprimento dessa trajetória (de uma posição extrema à outra).

Exercício 10. Uma roda-gigante de 60m de diâmetro possui 18 cabines numeradas sequencialmente de 1 a 18. Tino e sua namorada entram na cabine 5. A roda-gigante começa a girar, mas, para que fosse possível a entrada de outro casal, ela para na cabine 9 logo em seguida. Determine a distância, em metros, percorrida pela cabine de Tino nesse deslocamento.

Exercício 11. Em uma pista circular de 400m de comprimento, Joaquim Barbosa realiza um treinamento no qual ele corre 160m na maior velocidade que puder e para por 30s, repetindo o processo 12 vezes. Determine:

- a) o raio aproximado desta pista.
- b) a medida, em graus, do arco determinado em cada treinamento.
- c) a medida da menor determinação positiva do ângulo encontrado no item anterior.

3 Exercícios de Aprofundamento e de Exames

Exercício 12. Marca-se em um pneu, no ponto de seu contato com o solo, um ponto com tinta, que chamaremos de A. O carro percorre um determinado trecho, onde o pneu gira 18780°. Qual a distância do ponto A ao novo ponto de contato do pneu com o solo, chamado de P, em função do raio r do pneu?

Exercício 13. Em um programa que se chama Roda a Roda, existe uma roleta que os participantes giram para saber qual o seu prêmio, conforme a figura. A roleta deve estar posicionada sempre no PERDE TUDO antes do giro de qualquer participante e o giro deve ser sempre no sentido horário.

- a) Jairo gira a roleta 2760°. Qual é seu prêmio?
- b) Qual o menor ângulo para que o prêmio de Juarez seja 100?
- c) Quais ângulos fazem com que Josué perca a vez ou perca tudo?

Figura 2: Roleta de RODA A RODA

Exercício 14. Considere um círculo trigonométrico com centro na origem do sistema de coordenadas cartesianas. Quais arcos possuem a mesma abscissa, analisando apenas a primeira determinação positiva, que os arcos de

- a) 25° .
- b) 130°.
- c) 315°.
- d) 190°.
- e) $\frac{3\pi}{5}$ rad.
- f) $\frac{\pi}{6}$ rad.

Exercício 15. Considere um círculo trigonométrico com centro na origem do sistema de coordenadas cartesianas. Quais arcos possuem a mesma ordenada, analisando apenas a primeira determinação positiva, que os arcos de

- a) 55° .
- b) 110°.
- c) 300°.
- d) 220°.
- e) $\frac{2\pi}{5}$ rad.
- f) $\frac{5\pi}{6}$ rad.

Exercício 16. Nos X-Games Brasil, em maio de 2004, o skatista brasileiro Sandro Dias, apelidado Mineirinho, conseguiu realizar a manobra denominada 900, na modalidade skate vertical, tornando-se o segundo atleta no mundo a conseguir esse feito. A denominação 900 refere-se ao número de graus que o atleta gira no ar em torno de seu próprio corpo, que, no caso, corresponde a:

- a) uma volta completa.
- b) uma volta e meia.
- c) duas voltas completas.
- d) duas voltas e meia.
- e) cinco voltas completas.

Respostas e Soluções.

1.

a)
$$2\pi \cdot \frac{180^o}{360^o} = \pi$$
 cm.

b)
$$2\pi \cdot \frac{90^{\circ}}{360^{\circ}} = \pi/2 \text{ cm.}$$

c)
$$2\pi \cdot \frac{45^{\circ}}{360^{\circ}} = \pi/4 \text{ cm}.$$

d)
$$2\pi \cdot \frac{60^o}{360^o} = \pi/3$$
 cm.

e)
$$2\pi \cdot \frac{30^o}{360^o} = \pi/6 \text{ cm.}$$

f)
$$2\pi \cdot \frac{120^{\circ}}{360^{\circ}} = 2\pi/3 \text{ cm.}$$

g)
$$2\pi \cdot \frac{270^o}{360^o} = 3\pi/2$$
 cm.

2.

a)
$$30^{o} = \frac{180^{o}}{6} = \frac{\pi}{6}$$
 rad.

b)
$$45^{\circ} = \frac{180^{\circ}}{4} = \frac{\pi}{4}$$
 rad.

c)
$$60^{\circ} = \frac{180^{\circ}}{3} = \frac{\pi}{3}$$
 rad.

d)
$$120^{\circ} = \frac{360^{\circ}}{3} = \frac{2\pi}{3}$$
 rad.

e)
$$135^o = 3 \cdot 45^o = \frac{3\pi}{4}$$
 rad.

f)
$$150^{\circ} = 5 \cdot 30^{\circ} = \frac{5\pi}{6}$$
 rad.

g)
$$225^{\circ} = 5 \cdot 45^{\circ} = \frac{5\pi}{4}$$
 rad.

h)
$$300^{\circ} = 5 \cdot 60^{\circ} = \frac{5\pi}{3}$$
 rad.

3.

a)
$$2 \cdot 180^{\circ} = 360^{\circ}$$
.

b) 180°.

c)
$$\frac{180^{\circ}}{2} = 90^{\circ}$$
.

d)
$$\frac{180^o}{4} = 45^o$$
.

e)
$$\frac{180^{\circ}}{6} = 30^{\circ}$$
.

f)
$$\frac{3 \cdot 180^o}{4} = 135^o$$
.

g)
$$\frac{7 \cdot 180^{\circ}}{6} = 210^{\circ}$$
.

h)
$$\frac{11 \cdot 180^o}{6} = 330^o$$
.

4.

a)
$$30^{\circ} + 360^{\circ}k, k \in \mathbb{Z}$$

b)
$$60^{\circ} + 360^{\circ}k, k \in \mathbb{Z}$$

c)
$$135^{\circ} + 360^{\circ}k, k \in \mathbb{Z}$$

d)
$$\pi + 2k\pi, k \in \mathbb{Z}$$
.

e)
$$\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z}$$
.

5.

a)
$$400^{\circ} - 360^{\circ} = 40^{\circ}$$
.

b)
$$900^{\circ} - 2 \cdot 360^{\circ} = 180^{\circ}$$
.

c)
$$1500^{\circ} - 4 \cdot 360^{\circ} = 60^{\circ}$$
.

d)
$$-860^{\circ} + 3 \cdot 360^{\circ} = 220^{\circ}$$
.

e)
$$\frac{19\pi}{4} - \frac{16\pi}{4} = \frac{3\pi}{4}$$
 rad.

f)
$$\frac{81\pi}{6} - \frac{72\pi}{6} = \frac{9\pi}{6}$$
 rad.

6.
$$\alpha = \frac{12}{4} = 3$$
rad.

7. Como a medida do comprimento desta circunferência é $2\pi \cdot 8 = 16\pi$ cm, a medida do comprimento do arco é $\frac{60^o}{360^o}16\pi = \frac{8\pi}{3}$ cm.

8. A cada volta completa do ponteiro grande (minutos), o ponteiro pequeno (horas) anda uma hora, ou seja, $\frac{360^{\circ}}{12} = 30^{\circ}$, que é o valor da distância angular entre dois números consecutivos de um relógio analógico.

a)
$$5 \cdot 30^{\circ} = 150^{\circ}$$
.

- b) Se o ponteiro pequeno estivesse sobre o 9 e o grande sobre o 6, o ângulo seria $3 \cdot 30^{o} = 90^{o}$. Porém, o ponteiro pequeno desloca-se de forma proporcional ao deslocamento do ponteiro grande. Como o grande deu meia-volta, o pequeno percorreu metade de 30^{o} , assim o menor ângulo entre eles é $90^{o} + 15^{o} = 105^{o}$.
- c) Seguindo o mesmo raciocínio do item anterior, temos $\alpha = 3 \cdot 30^o + \frac{40}{60} 30^o = 110^o.$
- d) Neste caso, o ponteiro grande está depois do pequeno, isto significa que devemos subtrair o deslocamento do pequeno. Assim, temos $\alpha = 3 \cdot 30^{o} \frac{20}{60}30^{o} = 80^{o}$.
- e) Como o ponteiro grande está depois do pequeno, temos $\alpha=60^o-\frac{25}{60}30^o=60^o-12^o30'=47^o30'.$

- 9. Se o movimento realizado completasse uma circunferência, o comprimento da trajetória seria $2\pi 50=100\pi {\rm cm}$. Porém, a trajetória envolve apenas uma parte dessa circunferência. Temos, então, que o comprimento desse arco é $\ell=\frac{100\pi}{8}=\frac{25\pi}{2}{\rm cm}$.
- 10. O ângulo central determinado por duas cabines consecutivas é de $360^o/18=20^o$. O arco determinado pelas cabines 5 e 9 possui um ângulo que mede $4\cdot 20^o=80^o$. Assim, essa distância será $\ell=2\pi\cdot 30\frac{80^o}{360^o}=\frac{40\pi}{3}$ m.

11.

- a) $2\pi r = 400$, segue que $r = 200/\pi \approx 63$, 7m.
- b) A cada 400m temos 360°. O comprimento total de cada treino é, em metros, $12 \cdot 160 = 1.920 = 4 \cdot 400 + 320$. Assim, a medida do arco é $4 \cdot 360^{\circ} + \frac{320}{400}360^{\circ} = 1728^{\circ}$.
- c) Como temos 4 voltas completas mais 288°, a menor determinação positiva desse ângulo é 288°.
- 12. Como $18780^{o} = 52 \cdot 360^{o} + 60^{o}$, significa que o pneu deu 52 voltas completas mais 60^{o} . Isso significa que o ângulo central determinado pelo ponto A e o ponto P mede 60^{o} , ou seja, estes pontos e o centro da roda formam um triângulo equilátero. Assim, a distância entre os pontos A e P é r. Veja a figura.

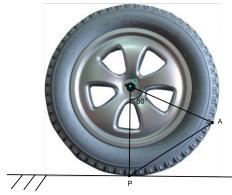


Figura 1: Posição Final do Pneu

13.

a) Como $2760^{o} = 7 \cdot 360^{o} + 240^{o}$, a roleta dá 7 voltas completas mais 240^{o} da oitava volta, ou seja, 240^{o} é a menor determinação positiva. Se a roleta é dividida em 24 faixas de prêmios (não necessariamente todos diferentes), significa que o prêmio ganho por Jairo está na faixa de número $\frac{240^{o}}{360^{o}}24=16$, que é 90. Observe que ao girar a roleta no sentido horário, a passagem das faixas pelo ponto inicial de referência se dá no sentido anti-horário. É como se um relógio tivesse os ponteiros parados e a base com os números girasse.

- b) O primeiro prêmio de 100, em relação à posição inicial, fica na terceira faixa. Assim, o menor ângulo é $\frac{3}{24}360^o = 45^o$.
- c) PASSA A VEZ E PERDE TUDO são as faixas múltiplas de 6, ou seja, eles aparecem (um ou outro) de $\frac{6}{24}360^o = 90^o$ em 90^o . Portanto, isso ocorrerá nos ângulos da forma $90^o k, k \in \mathbb{N}$.
- 14. Esse exercício requer descobrir o simétrico de cada arco em relação ao eixo x. Para isso, basta, a partir da origem do círculo trigonométrico, seguir no sentido horário, ou seja, é necessário apenas subtrair de 360^{o} ou 2π rad o arco em questão.
- a) $360^{\circ} 25^{\circ} = 335^{\circ}$.
- b) $360^{\circ} 130^{\circ} = 230^{\circ}$
- c) $360^{\circ} 315^{\circ} = 45^{\circ}$.
- d) $360^{\circ} 190^{\circ} = 170^{\circ}$
- e) $2\pi \frac{3\pi}{5} = \frac{7\pi}{5}$ rad.
- f) $2\pi \frac{\pi}{6} = \frac{11\pi}{6}$ rad.
- 15. Perceba que nesse exercício, diferente do anterior, o eixo de simetria é o eixo y, assim, basta tomar como ponto de partida 90° ou 270° , analisando, de acordo com o quadrante, qual operação deve ser realizada.
- a) $90^o + (90^o 55^o) = 125^o$, pois o ângulo pertence ao primeiro quadrante.
- b) $90^{o} (110^{o} 90^{o}) = 70^{o}$, pois o ângulo pertence ao segundo quadrante.
- c) $270^{o} (300^{o} 270^{o}) = 240^{o}$, pois o ângulo pertence ao quarto quadrante.
- d) $270^{o} + (270^{o} 220^{o}) = 320^{o}$, pois o ângulo pertence ao terceiro quadrante.

e)
$$\frac{\pi}{2} + (\frac{\pi}{2} - \frac{2\pi}{5}) = \frac{3\pi}{5}$$
rad.

f)
$$\frac{\pi}{2} - (\frac{5\pi}{6} - \frac{\pi}{2}) = \frac{\pi}{6}$$
rad.

Comentário para professores: Os dois últimos exercícios são importantes como preparação para entender que senos e cossenos de ângulos não congruentes podem ser iguais, como sen $15^o = \sin 75^o$.

16. (ENEM) Se cada volta completa tem 360^{o} e 900^{o} = $2 \cdot 360^{o} + 180^{o}$, então o atleta girou duas voltas e meia. Resposta D.

Propugino non Anguimento Curso de Everyo	
PRODUZIDO POR ARQUIMEDES CURSO DE ENSINO	
CONTATO@CURSOARQUIMEDES.COM	
	1