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Neste material, apresentamos uma variedade de resulta-
dos associados ao TVM ou que generalizam esse importante
teorema. Dentre estes, destacamos o TVM de Cauchy e
a Formula de Taylor com Resto de Lagrange @

1 Teoremas e exemplos

Teorema 1 (TVM de Cauchy). Sejam f, g : [a,b] — R fungdes
continuas, derivdveis em (a,b). Se g’ ndo se anula, entdo
existe ¢ € (a,b) tal que

=19 (1)

Prova. Como ¢’ nio se anula, o teorema de Darboux [T]
garante que ¢’ > 0 em (a,b) ou ¢’ <0 em (ayb); em qualquer
caso, g € estritamente mondtona e, portanto, injetiva.

Seja ¢ : [a,b] — R dada por

¢(x) = [f(b) = fa)lg(z) = [9(b) — g(a)lf ().

As hipéteses sobre f e g garantem que ¢ é continua, derivavel
em (a,b), e um calculo direto d& ¢(a) = ¢(b) = f(b)g(a) —
f(a)g(b); portanto, o teorema de Rolle garante a existéncia
de ¢ € (a,b) talque ¢'(c) = 0. Uma vez que

¢'(c) = [f(b) = f(a)lg'(c) — [g(b) — g(a)lf'(c)

eg(b) — gla)+#0,¢'(c) # 0, a relagdo segue. O

Exemplo 2. Resolva o sistema de equacgodes

2% 4 9Y = 16
3¢ 43V =54

Solugao. Observe que (z,y) = (3,3) é uma solugio. Veremos
que essa €, de fato, a tnica solugao.

LConfira o Exemplo 3 da 42 parte dessa aula.
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Com efeito, se tivéssemos 2% 4+ 2Y = 16 com (x,y) # (3, 3),
a monotonicidade da func¢ao exponencial u +— 2% garantiria
que z < 3 <youy < 3 <z Comoambas as equagoes do
sistema sao simétricas em x e y, basta considerar o 12 caso.

A partir das relaces 3% + 3¢ = 33 4+ 33, 27 42V = 23 4 23
poderiamos escrever

3% —37 3v-—33
23 — 27 2y 23"

(2)

Tencionamos empregar o teorema , para o qué convém
considerar as fungoes exponenciais f e g, de regras f(a) = 3*
e g(x) = 2*. Aplicando o TVM de Cauchy as restrigoes dessas
fungoes aos intervalos [x,3] e [3,y], obteriamos constantes
c < 3 < d tais que

33 —3® _ f3) = f(x) _ f'(e) - In3- 3¢
22-2v g(3)—g(x)  g'(c) In2-2¢

3v—-3"  fly)—f(3) . f(d In3-37

2—-25 g(y)—gB) ¢(d) In2.2¢

Substituindo esses valores em ([2)), terfamos a igualdade

-6

o que implicaria ¢ = d, uma contradigao. O

Exemplo. 3 (IMC - 2025). Sejam f : (0,+00) — R wuma
fungdo de classe C' e 0 < a < b nimeros reais tais que
fla) = f(b) = k. Prove que existe um ponto & € (a,b) tal que

f&) =& (€ =k
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g®) —gla) T - ar ) — bf(a)

= = = k'
h(b) — h(a §—1 a—b ’
como Ef (&)= 1(8)
g’(f) 52_ /
= = f(&) = &£1(9),
1
TG —
a relacao fornece o resultado desejado. O

Imitando o argumento da solug¢ao do exemplo anterior,
prova-se o seguinte resultado, conhecido como teorema do
valor médio de Pompeiu H

Teorema 4. E| Seja f : [a,b] = R uma fungdo derivdvel. Se
0 & [a,b], existe ¢ € (a,b) tal que

SOZID _ oy oo

Nosso préximo exemplo é devido ao matematico inglés
Thomas M. Flett (1923 - 1976).

Exemplo 5. E| Seja_f : [a,b] — R uma fungao derivdvel tal
que f'(a) = f'(b). Mostre que existe ¢ € (a,b) tal que

f(e) = fla) = f'(e)(c— a) ] (4)

2Em homenagem ao matemético romeno Dimitrie Pompeiu (1873 -
1954).

3Vide Teorema 3.1 de [1].

4Nao é dificil verificar (faga isso!) que, geometricamente, essa
igualdade significa que a secante ao grafico de f pelos pontos
(a, f(a)), (b, f(b)), a tangente ao grafico de f em (c, f(c)) e o eixo das
ordenadas sdo concorrentes.

5Vide Teorema 5.1 de [1].

SEssa igualdade tem a seguinte interpretacio geométrica: quando
as tangentes nos extremos do grdfico de uma fungdo (derivdvel) sao
paralelas, existe uma secante ao grdfico, passando pela sua extremidade
esquerda, que tangencia esse grdfico em algum ponto interior. Uma vez
mais, convidamos-lhe a checar a validade dessa afirmacgao.
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Solugdo. Defina a funcio auxiliar g : [a,b] — R pela regra

(2) = 7}“(2:5@)7 se = € (a,b]
= f'(a), sex=a

Da diferenciabilidade de f, segue a diferenciabilidade de g
em (a,b]. Por outro lado, sendo lim,_,,+ g(z) = f'(a), é facil
concluir que g é continua.

Pela regra do quociente para a derivada, temos

§(z) = f'(x) - (x — a()x—((J:)(Qx) —f(a)-1

_ f(@) —g(x)

- )
xr—a

para cada x € (a,b]. Em particular, a hipétese f'(a) = f'(b)
da
f'(®) —9(b) _ fiAa)—g() | g(b) —g(a)

/ _ _ y A
g'(b) = b—a N b—a N b—a

Pelo TVM, existe d € (a,b) satisfazendo w =g'(d), o
que, pelo calculo anterior, implica

g'(b)+g'(d) = 0. ()

Afirmagdo. Existe ¢ € (a,b) tal que ¢'(c) = 0.

Com efeito, se for ¢’(d) = 0, basta tomar ¢ = d. Caso
contrério, a relagao garante que ¢'(b) e ¢’(d) possuem
sinais contrarios, de sorte que ¢’(¢) = 0 para algum ¢ € (d, b),
pelo Teorema de Darboux.

Com a afirmacgao justificada, a expressao de g’ obtida
acima garante que a igualdade ¢'(c) = 0 equivale a f'(¢) =
g(c), o que, por sua vez, nada mais é que . O

Para o préximo resultado, recorde que, dados um intervalo
I e um ntmero natural n, uma funcao f: I — R é dita de
classe C"~1 se for n—1 vezes derivavel em I, com (n—1)-ésima
derivada f~1 : I — R continua.
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Teorema 6 (Férmula de Taylor com Resto de Lagrange). Sejam
I um intervalo, n um numero natural e f : I — R uma fun¢ao
de classe C"~ 1, n vezes derivdvel no interior de I. Dados
a,b eI, coma#b, existe c no intervalo aberto de extremos
a e b satisfazendo

=51 C9 -0y + LDy, (o)
> .
ou seja,
£6) = £(@) + £ —a) + LDy
- M(b —apig ] (TZ!@ (b — a)"

Prova. Em tudo o que segue, denotamos por J o intervalo
aberto de extremos a e b. Dividiremos a demonstragao em
casos.

19 caso. f(a) = f(b) = f'(a) = ... = f*V(a) = 0:

Temos de provar que f(™(c) = 0 para algum ¢ € J. Mas
foi justamente isso que fizemos no Exemplo 6 E] da 1% parte
dessa aula.

° caso. f(a)=f'(a)=...= f"V(a) =0:

Aqui, precisamos garantir a existéncia de ¢ € J tal que
(n)
fb)y= fT(C)(b —a)". Se definirmos g : I — R pela regra

f(0) n
b—ay " "
é tarefa simples verificar que g(a) = g(b) = ¢'(a) = ... =
g™ Y(a) =0, sendo g de classe C"~! e n vezes derivavel no
interior de I. (Note que as derivadas de ordem menor que n

g(x) = f(x) -

"Embora tenhamos suposto a < b na solugdo daquele exemplo, a
situagdo em que a > b pode ser tratada de forma completamente andloga.
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da fungéo polinomial z — (z — a)™ se anulam em a.) Pelo 1°
caso, existe ¢ € J com g(™(¢) = 0. Como

n!f(b)

) () = f) () — 2O
9 @) = [ @)~

para cada x no interior de I, a relagdo ¢(™ (c) = 0 implica

1) = L5 b~ ay.

Caso geral. Considere o polinémio P, de grau menor que
ou igual a n — 1, satisfazendo P(*)(a) = f()(a), para cada
0<i<n-1. Como sabemos,

Definindo ¢ : I — R por g(z) = f(x) — P(z), é evidente que
g é de classe C" 1, é n vezes derivavel no interior de I e tal
que g(a) = ¢'(a) = ... = ¢ V(a) = 0. Portanto, pelo 2°
caso, existe ¢ € J tal que g(b) = g—(%(b— a)”. Sendo P um
polinémio de grau menor que n, vale P(") = 0, de forma que
g™ = f") Assim,

ou seja,

() (q (e
Zf a)z+f ()(b_a)n.

n!
O
Antes de continuar, precisaremos do seguinte
Lema 7. Para cada numero real x, vale
.o
lim — =0. (7)

n—oo n!

8Confira o Exemplo 13 da aula Propriedades - Parte II, no médulo
Derivada como Fungao.
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Prova. Fixado = € R, sejam k um inteiro positivo tal que
|z| < k e a:=|z|/k. Para cada natural n > k, temos

G i

n! n!

Jz* 2] 2
k' k41
< =* (x
— Kl k
=Mo"k,

n

em que M := |z[*/k!. Como 0 < a < 1, temos a" % =3 0

de forma que as estimativas acima garantem a validade da

relagao (|7)). O

Recordemos também que, conforme comentado anteri-
ormente E dada uma sequéncia (a;);>0 de ndimeros reais,
escrevemos

Zai:s ou ag+a1+...+ap+---=38

i=0
para indicar que a sequéncia (s, ),>0 das somas parciais, em
que s, := ag + a1+ ..+ a,, converge para s. Assim, por
defini¢do, a igualdade Y ;- a; = s significa que

lim (ag +a1+...+a,) =s.

n—o0
Exemplo 8. Prove que
oo i
para cada numero real . Em sequida, mostre que
1
O+1'+2'+ +m+...

9Vide Exemplo 3.3 na referéncia [3].
10Confira a secdo Dicas para o Professor da aula Diferenciacdo
Implicita - Parte I1I, no médulo Regra da Cadeia.
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€ um ndmero irracional.

Prova. Para a primeira parte, fixe z € R\ {0} e defina

Sp 1= Z? o > para cada inteiro n > 0. Precisamos provar

que lim,, .., s, = €%, ou, equivalentemente, que

lim (e* — s,) = 0. (8)

n—oo

Pela férmula de Taylor @ aplicada a f = exp, com
a = 0, b = x e n substituido por n + 1, deve existir ¢ no
intervalo aberto de extremos 0 e x tal que

exp™ () i
(n+1)!

Sendo exp("+1)(c) =e¢ < el?l segue que

er — s, =

|a:,|n+1
(n+ )

Jz]2
(D! +1)
o que, por conta da desigualdade @D implica a relagao .
Quanto a irracionalidade de e, suponhamos, por con-
tradicao, que ele fosse racional, digamos, e = “*, para certos

inteiros positivos m,n. Entao,

|
nle=n! Z =y ey
1! 7!

i<n i>n

(9)

le” — 5,| < elol .

Para concluir, o lema |7 diz que +— 0 quando n — oo,

=a-+0b,

!
em que a := EKH ELobi= 0
Observe que, na soma que define a, cada parcela n!/i! é

7

um inteiro positivo (ja que i < n), de modo que a também é
um inteiro positivo.
Afirmamos que b é um numero real positivo e menor que
n!

1. De fato, é evidente que b é positivo (pois b > (CEsy i

—— > 0). Por outro lado, observando que

n+1

n! 1 ,

ﬁ S W, Vi> n,
http://matematica.obmep.org.br/ P.8

matematica@obmep.org.br



com desigualdade estrita se ¢ > n + 1, vem que

. nl > 1
AR A
]:1(n+1
1
1
_Lll <.
S

(Note que a pentltima igualdade se justifica-a partir da
férmula para a soma dos termos de uma PG infinita cujo
primeiro termo e razao sdo iguais a 1/(n + 1). E-D

Desse modo, as relagoes nle = a+b e 0 < b < 1implicam

a<nle<a+l,

impedindo nle de ser inteiro, pois a € Z e nao ha inteiro
algum entre dois inteiros consecutivos.” Por outro lado, como
estamos supondo que e = ™, temos que nle = m(n —1)! é
um inteiro! Essa contradigao mostra que e ndo pode ser um
nimero racional, ou seja, e é irracional. O

Dicas para o Professor

A férmula [6] permite aproximar f, em uma vizinhanca
dada 1, do ponto a, por um polinédmio de grau menor que
ou igual a n — 1, sendo o erro dessa aproximacao controlado
pela derivada de ordem n de f restrita a I,. Exploramos essa
propriedade, relativamente a fungdo cosseno, nos exemplos 2
e 3 da aula Ezercicios - Parte III, no médulo Derivadas de
Funcgoes Trigonométricas.

Perceba que o caso n = 1 na féormula de Taylor com
resto de Lagrange corresponde ao TVM. Outrossim, o TVM

11Recorde a Proposicdo 1 da aula A Soma dos Termos de uma PG
Infinita, no médulo Progressoes Geométricas.
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também se torna um caso particular do TVM de Cauchy ao
considerarmos g = Id.

Podemos interpretar cinematicamente o TVM de Cauchy
da seguinte forma: se f, g : [a,b] — R cumprirem as hipdteses
desse teorema, a curva plana v : [a,b] — R?, dada por y(t) =
(f(t),g(t)), possui, em um instante ¢ € (a, ), vetor velocidade
~v'(¢) := (f'(¢),¢'(¢)) paralelo ao vetor deslocamento ~y(b) —
Y(a) = (F(b) ~ F(a), g(b) — g(a))-

Com efeito, se ¢ € (a,b) satisfizer , consideramos o
escalar k := f'(c)/g'(c) e o vetor v := (k, 1), obtendo/(c) =
g'(¢) -v. Ademais, a relagdo (1]) garante v(b) —v(a) = (g(b) —
g(a))-v, de modo que os vetores v'(c) e v(b) —v(a) sdo ambos
paralelos ao vetor v.

A demonstragdo apresentada do TVM de Cauchy [I] é
classica (vide [4], [5] ou [6]) e consiste de uma adaptagio
da 22 demonstracao do Teorema do Valor. Médio, conforme
registramos na 32 parte dessa aula. H4, contudo, uma prova
natural que estabelece o TVM de Cauchy como um corolario
do TVM (de Lagrange) e da regra da cadeia.

Realmente, definindo « := g(a), 8 := g(b), perceba que as
hipéteses do teorema || garantem que g é um homeomorfismo
sobre [a, ] (podemos, sem perda de generalidade, supor
a < f), enquanto a restricdo gl ¢ um difeomorfismo
sobre («, 8). Dai, utilizando a regra da cadeia (para fungoes
derivaveis e também para fungdes continuas), ndo é dificil

concluir que ¢ :=f o g~! cumpre as hipéteses do TVM.
Portanto, existe d € («a, 3) tal que
¢(B) — ¢(a) = ¢'(d)(B — a). (10)

Pondo ¢ := g~'(d), teremos ¢ € (a,b); sendo ¢(8) = f(b),
¢(a) = fa) e

a relagdo (10) permite concluir , como desejado.
Trés sessoes de 50min devem ser suficientes para expor o
conteiido desse material.
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