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Neste material, apresentamos uma variedade de resulta-
dos associados ao TVM ou que generalizam esse importante
teorema. Dentre estes, destacamos o TVM de Cauchy (1) e
a Fórmula de Taylor com Resto de Lagrange (6).

1 Teoremas e exemplos
Teorema 1 (TVM de Cauchy). Sejam f, g : [a, b] → R funções
cont́ınuas, deriváveis em (a, b). Se g′ não se anula, então
existe c ∈ (a, b) tal que

f(b) − f(a)
g(b) − g(a) = f ′(c)

g′(c) . (1)

Prova. Como g′ não se anula, o teorema de Darboux 1

garante que g′ > 0 em (a, b) ou g′ < 0 em (a, b); em qualquer
caso, g é estritamente monótona e, portanto, injetiva.

Seja ϕ : [a, b] → R dada por

ϕ(x) = [f(b) − f(a)]g(x) − [g(b) − g(a)]f(x).

As hipóteses sobre f e g garantem que ϕ é cont́ınua, derivável
em (a, b), e um cálculo direto dá ϕ(a) = ϕ(b) = f(b)g(a) −
f(a)g(b); portanto, o teorema de Rôlle garante a existência
de c ∈ (a, b) tal que ϕ′(c) = 0. Uma vez que

ϕ′(c) = [f(b) − f(a)]g′(c) − [g(b) − g(a)]f ′(c)

e g(b) − g(a) ̸= 0, g′(c) ̸= 0, a relação (1) segue.

Exemplo 2. Resolva o sistema de equações{
2x + 2y = 16
3x + 3y = 54

.

Solução. Observe que (x, y) = (3, 3) é uma solução. Veremos
que essa é, de fato, a única solução.

1Confira o Exemplo 3 da 4ª parte dessa aula.
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Com efeito, se tivéssemos 2x + 2y = 16 com (x, y) ̸= (3, 3),
a monotonicidade da função exponencial u 7→ 2u garantiria
que x < 3 < y ou y < 3 < x. Como ambas as equações do
sistema são simétricas em x e y, basta considerar o 1º caso.

A partir das relações 3x + 3y = 33 + 33, 2x + 2y = 23 + 23,
podeŕıamos escrever

33 − 3x

23 − 2x
= 3y − 33

2y − 23 . (2)

Tencionamos empregar o teorema (1), para o quê convém
considerar as funções exponenciais f e g, de regras f(x) = 3x

e g(x) = 2x. Aplicando o TVM de Cauchy às restrições dessas
funções aos intervalos [x, 3] e [3, y], obteŕıamos constantes
c < 3 < d tais que

33 − 3x

23 − 2x
= f(3) − f(x)

g(3) − g(x) = f ′(c)
g′(c) = ln 3 · 3c

ln 2 · 2c

e
3y − 33

2y − 23 = f(y) − f(3)
g(y) − g(3) = f ′(d)

g′(d) = ln 3 · 3d

ln 2 · 2d
.

Substituindo esses valores em (2), teŕıamos a igualdade(
3
2

)c

=
(

3
2

)d

,

o que implicaria c = d, uma contradição.

Exemplo 3 (IMC - 2025). Sejam f : (0, +∞) → R uma
função de classe C1 e 0 < a < b números reais tais que
f(a) = f(b) = k. Prove que existe um ponto ξ ∈ (a, b) tal que

f(ξ) − ξf ′(ξ) = k.

Solução. Defina g, h : [a, b] → R por g(x) = f(x)/x e h(x) =
1/x. Como g e h são deriváveis e h′(x) = − 1

x2 ̸= 0, o TVM
de Cauchy fornece ξ ∈ (a, b) tal que

g(b) − g(a)
h(b) − h(a) = g′(ξ)

h′(ξ) . (3)
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A hipótese f(a) = f(b) = k dá

g(b) − g(a)
h(b) − h(a) =

f(b)
b − f(a)

a
1
b − 1

a

= af(b) − bf(a)
a − b

= k;

como
g′(ξ)
h′(ξ) =

ξf ′(ξ)−f(ξ)
ξ2

− 1
ξ2

= f(ξ) − ξf ′(ξ),

a relação (3) fornece o resultado desejado.

Imitando o argumento da solução do exemplo anterior,
prova-se o seguinte resultado, conhecido como teorema do
valor médio de Pompeiu 2.

Teorema 4. 3 Seja f : [a, b] → R uma função derivável. Se
0 ̸∈ [a, b], existe c ∈ (a, b) tal que

af(b) − bf(a)
a − b

= f(c) − cf ′(c).4

Nosso próximo exemplo é devido ao matemático inglês
Thomas M. Flett (1923 - 1976).

Exemplo 5. 5 Seja f : [a, b] → R uma função derivável tal
que f ′(a) = f ′(b). Mostre que existe c ∈ (a, b) tal que

f(c) − f(a) = f ′(c)(c − a).6 (4)
2Em homenagem ao matemático romeno Dimitrie Pompeiu (1873 -

1954).
3Vide Teorema 3.1 de [1].
4Não é dif́ıcil verificar (faça isso!) que, geometricamente, essa

igualdade significa que a secante ao gráfico de f pelos pontos
(a, f(a)), (b, f(b)), a tangente ao gráfico de f em (c, f(c)) e o eixo das
ordenadas são concorrentes.

5Vide Teorema 5.1 de [1].
6Essa igualdade tem a seguinte interpretação geométrica: quando

as tangentes nos extremos do gráfico de uma função (derivável) são
paralelas, existe uma secante ao gráfico, passando pela sua extremidade
esquerda, que tangencia esse gráfico em algum ponto interior. Uma vez
mais, convidamos-lhe a checar a validade dessa afirmação.
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Solução. Defina a função auxiliar g : [a, b] → R pela regra

g(x) =
{

f(x)−f(a)
x−a , se x ∈ (a, b]

f ′(a), se x = a
.

Da diferenciabilidade de f , segue a diferenciabilidade de g
em (a, b]. Por outro lado, sendo limx→a+ g(x) = f ′(a), é fácil
concluir que g é cont́ınua.

Pela regra do quociente para a derivada, temos

g′(x) = f ′(x) · (x − a) − (f(x) − f(a)) · 1
(x − a)2

= f ′(x) − g(x)
x − a

,

para cada x ∈ (a, b]. Em particular, a hipótese f ′(a) = f ′(b)
dá

g′(b) = f ′(b) − g(b)
b − a

= f ′(a) − g(b)
b − a

= −g(b) − g(a)
b − a

.

Pelo TVM, existe d ∈ (a, b) satisfazendo g(b)−g(a)
b−a = g′(d), o

que, pelo cálculo anterior, implica

g′(b) + g′(d) = 0. (5)

Afirmação. Existe c ∈ (a, b) tal que g′(c) = 0.
Com efeito, se for g′(d) = 0, basta tomar c = d. Caso

contrário, a relação (5) garante que g′(b) e g′(d) possuem
sinais contrários, de sorte que g′(c) = 0 para algum c ∈ (d, b),
pelo Teorema de Darboux.

Com a afirmação justificada, a expressão de g′ obtida
acima garante que a igualdade g′(c) = 0 equivale a f ′(c) =
g(c), o que, por sua vez, nada mais é que (4).

Para o próximo resultado, recorde que, dados um intervalo
I e um número natural n, uma função f : I → R é dita de
classe Cn−1 se for n−1 vezes derivável em I, com (n−1)-ésima
derivada f (n−1) : I → R cont́ınua.
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Teorema 6 (Fórmula de Taylor com Resto de Lagrange). Sejam
I um intervalo, n um número natural e f : I → R uma função
de classe Cn−1, n vezes derivável no interior de I. Dados
a, b ∈ I, com a ̸= b, existe c no intervalo aberto de extremos
a e b satisfazendo

f(b) =
n−1∑
i=0

f (i)(a)
i! (b − a)i + f (n)(c)

n! (b − a)n, (6)

ou seja,

f(b) = f(a) + f ′(a)(b − a) + f ′′(a)
2! (b − a)2 + · · ·

+ f (n−1)(a)
(n − 1)! (b − a)n−1 + f (n)(c)

n! (b − a)n.

Prova. Em tudo o que segue, denotamos por J o intervalo
aberto de extremos a e b. Dividiremos a demonstração em
casos.

1º caso. f(a) = f(b) = f ′(a) = . . . = f (n−1)(a) = 0:

Temos de provar que f (n)(c) = 0 para algum c ∈ J . Mas
foi justamente isso que fizemos no Exemplo 6 7 da 1ª parte
dessa aula.

2º caso. f(a) = f ′(a) = . . . = f (n−1)(a) = 0:

Aqui, precisamos garantir a existência de c ∈ J tal que
f(b) = f(n)(c)

n! (b − a)n. Se definirmos g : I → R pela regra

g(x) = f(x) − f(b)
(b − a)n

(x − a)n,

é tarefa simples verificar que g(a) = g(b) = g′(a) = . . . =
g(n−1)(a) = 0, sendo g de classe Cn−1 e n vezes derivável no
interior de I. (Note que as derivadas de ordem menor que n

7Embora tenhamos suposto a < b na solução daquele exemplo, a
situação em que a > b pode ser tratada de forma completamente análoga.
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da função polinomial x 7→ (x − a)n se anulam em a.) Pelo 1º
caso, existe c ∈ J com g(n)(c) = 0. Como

g(n)(x) = f (n)(x) − n!f(b)
(b − a)n

,

para cada x no interior de I, a relação g(n)(c) = 0 implica
f(b) = f(n)(c)

n! (b − a)n.

Caso geral. Considere o polinômio P , de grau menor que
ou igual a n − 1, satisfazendo P (i)(a) = f (i)(a), para cada
0 ≤ i ≤ n − 1. Como sabemos, 8

P (x) =
n−1∑
i=0

f (i)(a)
i! (x − a)i.

Definindo g : I → R por g(x) = f(x) − P (x), é evidente que
g é de classe Cn−1, é n vezes derivável no interior de I e tal
que g(a) = g′(a) = . . . = g(n−1)(a) = 0. Portanto, pelo 2º
caso, existe c ∈ J tal que g(b) = g(n)(c)

n! (b − a)n. Sendo P um
polinômio de grau menor que n, vale P (n) ≡ 0, de forma que
g(n) ≡ f (n). Assim,

f(b) − P (b) = g(b) = f (n)(c)
n! (b − a)n,

ou seja,

f(b) =
n−1∑
i=0

f (i)(a)
i! (b − a)i + f (n)(c)

n! (b − a)n.

Antes de continuar, precisaremos do seguinte

Lema 7. Para cada número real x, vale

lim
n→∞

xn

n! = 0. (7)
8Confira o Exemplo 13 da aula Propriedades - Parte II, no módulo

Derivada como Função.
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Prova. Fixado x ∈ R, sejam k um inteiro positivo tal que
|x| < k e a := |x|/k. Para cada natural n > k, temos∣∣∣∣xn

n!

∣∣∣∣ = |x|n

n!

= |x|k

k! · |x|
k + 1 · · · |x|

n

≤ |x|k

k! ·
(

|x|
k

)n−k

= M · an−k,

em que M := |x|k/k!. Como 0 ≤ a < 1, temos an−k n→∞−→ 0
9, de forma que as estimativas acima garantem a validade da
relação (7).

Recordemos também que, conforme comentado anteri-
ormente 10, dada uma sequência (ai)i≥0 de números reais,
escrevemos

∞∑
i=0

ai = s ou a0 + a1 + . . . + an + · · · = s

para indicar que a sequência (sn)n≥0 das somas parciais, em
que sn := a0 + a1 + . . . + an, converge para s. Assim, por
definição, a igualdade

∑∞
i=0 ai = s significa que

lim
n→∞

(a0 + a1 + . . . + an) = s.

Exemplo 8. Prove que

ex =
∞∑

i=0

xi

i! ,

para cada número real x. Em seguida, mostre que

e = 1
0! + 1

1! + 1
2! + . . . + 1

n! + . . .

9Vide Exemplo 3.3 na referência [3].
10Confira a seção Dicas para o Professor da aula Diferenciação

Impĺıcita - Parte II, no módulo Regra da Cadeia.
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é um número irracional.

Prova. Para a primeira parte, fixe x ∈ R \ {0} e defina
sn :=

∑n
i=0

xi

i! , para cada inteiro n ≥ 0. Precisamos provar
que limn→∞ sn = ex, ou, equivalentemente, que

lim
n→∞

(ex − sn) = 0. (8)

Pela fórmula de Taylor (6) aplicada a f = exp, com
a = 0, b = x e n substitúıdo por n + 1, deve existir c no
intervalo aberto de extremos 0 e x tal que

ex − sn = exp(n+1)(c)
(n + 1)! xn+1.

Sendo exp(n+1)(c) = ec < e|x|, segue que

|ex − sn| < e|x| · |x|n+1

(n + 1)! . (9)

Para concluir, o lema 7 diz que |x|n+1

(n+1)! → 0 quando n → ∞,
o que, por conta da desigualdade (9), implica a relação (8).

Quanto à irracionalidade de e, suponhamos, por con-
tradição, que ele fosse racional, digamos, e = m

n , para certos
inteiros positivos m, n. Então,

n!e = n!
∞∑

i=0

1
i! =

∑
i≤n

n!
i! +

∑
i>n

n!
i!

= a + b,

em que a :=
∑

i≤n
n!
i! , b :=

∑
i>n

n!
i! .

Observe que, na soma que define a, cada parcela n!/i! é
um inteiro positivo (já que i ≤ n), de modo que a também é
um inteiro positivo.

Afirmamos que b é um número real positivo e menor que
1. De fato, é evidente que b é positivo (pois b > n!

(n+1)! =
1

n+1 > 0). Por outro lado, observando que

n!
i! ≤ 1

(n + 1)i−n
, ∀ i > n,

http://matematica.obmep.org.br/ P.8
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com desigualdade estrita se i > n + 1, vem que

b =
∞∑

i=n+1

n!
i! <

∞∑
i=n+1

1
(n + 1)i−n

=
∞∑

j=1

1
(n + 1)j

=
1

n+1

1 − 1
n+1

= 1
n

≤ 1.

(Note que a penúltima igualdade se justifica a partir da
fórmula para a soma dos termos de uma PG infinita cujo
primeiro termo e razão são iguais a 1/(n + 1). 11)

Desse modo, as relações n!e = a + b e 0 < b < 1 implicam

a < n!e < a + 1,

impedindo n!e de ser inteiro, pois a ∈ Z e não há inteiro
algum entre dois inteiros consecutivos. Por outro lado, como
estamos supondo que e = m

n , temos que n!e = m(n − 1)! é
um inteiro! Essa contradição mostra que e não pode ser um
número racional, ou seja, e é irracional.

Dicas para o Professor

A fórmula 6 permite aproximar f , em uma vizinhança
dada Ia do ponto a, por um polinômio de grau menor que
ou igual a n − 1, sendo o erro dessa aproximação controlado
pela derivada de ordem n de f restrita a Ia. Exploramos essa
propriedade, relativamente à função cosseno, nos exemplos 2
e 3 da aula Exerćıcios - Parte III, no módulo Derivadas de
Funções Trigonométricas.

Perceba que o caso n = 1 na fórmula de Taylor com
resto de Lagrange corresponde ao TVM. Outrossim, o TVM

11Recorde a Proposição 1 da aula A Soma dos Termos de uma PG
Infinita, no módulo Progressões Geométricas.
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também se torna um caso particular do TVM de Cauchy ao
considerarmos g = Id.

Podemos interpretar cinematicamente o TVM de Cauchy
da seguinte forma: se f, g : [a, b] → R cumprirem as hipóteses
desse teorema, a curva plana γ : [a, b] → R2, dada por γ(t) =
(f(t), g(t)), possui, em um instante c ∈ (a, b), vetor velocidade
γ′(c) := (f ′(c), g′(c)) paralelo ao vetor deslocamento γ(b) −
γ(a) = (f(b) − f(a), g(b) − g(a)).

Com efeito, se c ∈ (a, b) satisfizer (1), consideramos o
escalar k := f ′(c)/g′(c) e o vetor v := (k, 1), obtendo γ′(c) =
g′(c) · v. Ademais, a relação (1) garante γ(b) − γ(a) = (g(b) −
g(a)) ·v, de modo que os vetores γ′(c) e γ(b)−γ(a) são ambos
paralelos ao vetor v.

A demonstração apresentada do TVM de Cauchy 1 é
clássica (vide [4], [5] ou [6]) e consiste de uma adaptação
da 2ª demonstração do Teorema do Valor Médio, conforme
registramos na 3ª parte dessa aula. Há, contudo, uma prova
natural que estabelece o TVM de Cauchy como um corolário
do TVM (de Lagrange) e da regra da cadeia.

Realmente, definindo α := g(a), β := g(b), perceba que as
hipóteses do teorema 1 garantem que g é um homeomorfismo
sobre [α, β] (podemos, sem perda de generalidade, supor
α < β), enquanto a restrição g|(a,b) é um difeomorfismo
sobre (α, β). Dáı, utilizando a regra da cadeia (para funções
deriváveis e também para funções cont́ınuas), não é dif́ıcil
concluir que ϕ := f ◦ g−1 cumpre as hipóteses do TVM.
Portanto, existe d ∈ (α, β) tal que

ϕ(β) − ϕ(α) = ϕ′(d)(β − α). (10)

Pondo c := g−1(d), teremos c ∈ (a, b); sendo ϕ(β) = f(b),
ϕ(α) = f(a) e

ϕ′(d) = f ′(g−1(d)) · (g−1)′(d) = f ′(c)
g′(c) ,

a relação (10) permite concluir (1), como desejado.
Três sessões de 50min devem ser suficientes para expor o

conteúdo desse material.
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