Material Teórico - Módulo de Função Logarítmica

Função logarítmica e propriedades - Parte 3

Primeiro Ano - Ensino Médio

Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

06 de abril de 2019

Nesta terceira parte, exibiremos uma abordagem das funções logarítmicas e exponenciais diferente daquela que desenvolvemos nas duas primeiras partes desta aula: apresentaremos primeiro a função logarítimica, dada como a área delimitada por um arco de hipérbole, e obteremos a função exponencial como sua inversa. Seguiremos a abordagem das sugestões de leitura complementar [1] e [3]. Longe de pensarmos em esgotar o assunto aqui, faremos apenas uma breve introdução, remetando os leitores a essas referências para um maior detalhamento.

1 Área sob a hipérbole

Adotaremos a notação \mathbb{R}^+ , dada na sugestão de leitura complementar 3, para o conjunto dos números reais positivos.

O gráfico da função $f: \mathbb{R}^+ \to \mathbb{R}$, dada por

$$f(x) = \frac{1}{x} \tag{1}$$

é um dos ramos de uma hipérbole equilátera e tem o formato mostrado na Figura 1.

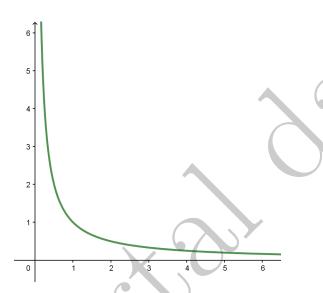


Figura 1: o gráfico da função dada por f(x) = 1/x, para x > 0.

Esse gráfico é o conjunto $H = \{(x,y) \mid x > 0, xy = 1\}$. Dados $a, b \in \mathbb{R}$, com 0 < a < b, vamos chamar de **faixa de hipérbole** H_a^b a região do plano limitada pelo eixo das abscissas, pelo gráfico de f e pelas retas verticais que passam por a e por b, ou seja,

$$H_a^b = \left\{ (x, y) \mid a < x < b, \ 0 < y < \frac{1}{x} \right\}. \tag{2}$$

Veja a Figura 2.

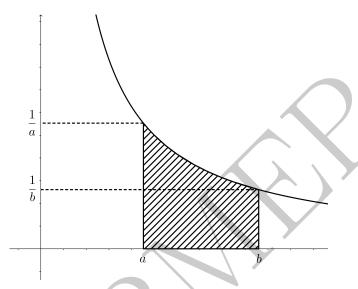


Figura 2: a faixa de hipérbole H_a^b .

A área de uma faixa de hipérbole H_a^b , que denotaremos por S_a^b , pode ser aproximada pela soma das áreas de retângulos vinculados ao gráfico da função y=1/x, como explicaremos a seguir.

Para cada número natural n, marcamos no eixo das abscissas os n+1 números reais $x_0 < x_1 < \cdots < x_{n-1} < x_n$, tais que $x_0 = a$, $x_n = b$ e, para $1 \le i \le n$, o comprimento do intervalo $[x_{i-1}, x_i]$ seja $\Delta x_i = x_i - x_{i-1} = \frac{b-a}{n}$. O conjunto $P_n = \{x_0, \dots, x_n\}$ é chamado de uma **partição** (equiespaçada) do intervalo [a, b].

A partição P_n do intervalo [a,b] o divide em n intervalos de comprimento $\frac{b-a}{n}$. Nas Figuras 3 e 4, o intervalo [a,b] é dividido em quatro partes iguais. Não é difícil verificar que o ponto x_i da partição P_n é dado por

$$x_i = a + \frac{b-a}{n} \cdot i. (3)$$

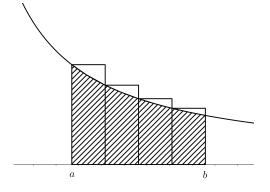


Figura 3: aproximação da área S_a^b por excesso.

Sobre cada intervalo $[x_{i-1},x_i]$, podemos construir dois retângulos com mesma base $\Delta x_i = \frac{b-a}{n}$ e alturas distintas: $\frac{1}{x_{i-1}}$ e $\frac{1}{x_i}$. A soma das áreas dos retângulos com alturas maiores fornece uma aproximação $E^b_a(n)$ da área S^b_a por excesso (mostrada na Figura 3), ou seja, é um valor aproximado de S^b_a e maior do que esse número. Já a soma das áreas dos retângulos com alturas menores fornece uma aproximação $F^b_a(n)$ de S^b_a por falta, ou seja, um valor aproximado de S^b_a e menor do que esse número (veja a Figura 4).

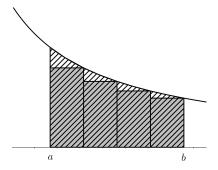


Figura 4: aproximação da área S_a^b por falta.

Além disso, para cada erro $\varepsilon>0$, considerando n suficientemente grande podemos garantir que $E_a^b(n)$ e $F_a^b(n)$ aproximam S_a^b com erro menor que ϵ , isto é:

$$S_a^b - \varepsilon < F_a^b(n) < S_a^b < E_a^b(n) < S_a^b + \varepsilon. \tag{4}$$

Uma justificativa intuitiva para as desigualdades acima é que, ao aumentarmos o número n retângulos, cada um deles se torna mais fino, o que reduz os erros nas aproximações. Para maiores detalhes, veja, por exemplo, o capítulo 4 da sugestão de leitura complementar [3].

O resultado a seguir usa aproximações por falta e por excesso para mostrar que as áreas das faixas de hipérbole H_a^b e H_{ka}^{kb} (para k>0) são iguais.

Teorema 1. Se k é um número real positivo, então $S_{ka}^{kb} = S_a^b$.

Prova. Primeiro, vamos comparar as áreas de retângulos de dois retângulos que estão abaixo do gráfico de $y = \frac{1}{x}$, como mostrado na Figura 5.

O retângulo cuja base é o intervalo [a,b] e que tem altura $\frac{1}{b}$ tem área igual a $\frac{b-a}{b}$. Por outro lado, o retângulo cuja base é o intervalo [ka,kb] e que tem altura $\frac{1}{kb}$ tem área $\frac{kb-ka}{kb}=\frac{b-a}{b}$. Logo, os dois retângulos têm a mesma área.

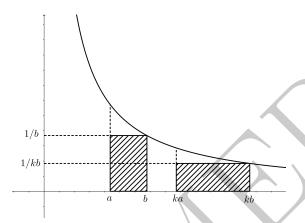


Figura 5: os retângulos abaixo do gráfico de y = 1/x e acima dos intervalos [a, b] e [ka, kb], têm mesma área.

Consideremos, agora, duas faixas de hipérbole H_a^b e H_{ka}^{kb} , com áreas S_a^b e S_{ka}^{kb} . A partir de uma partição $P = \{x_0, x_1, \dots, x_{n-1}, x_n\}$ do intervalo [a, b], podemos construir a partição $kP = \{kx_0, kx_1, \dots, kx_{n-1}, kx_n\}$ do intervalo [ka, kb].

Seja i um número natural, $1 \leq i \leq n$. O retângulo construído sobre o intervalo $[x_{i-1}, x_i]$ e com altura $\frac{1}{x_i}$, tem área igual a $\frac{x_i - x_{i-1}}{x_i}$. O retângulo construído sobre o intervalo $[kx_{i-1}, kx_i]$ e com altura $\frac{1}{kx_i}$ tem área igual a $\frac{kx_i - kx_{i-1}}{kx_i} = \frac{x_i - x_{i-1}}{x_i}$. Dessa forma, é possível aproximar S_a^b e S_{ka}^{kb} , por falta,

Dessa forma, é possível aproximar S_a^b e S_{ka}^{kb} , por falta, usando-se retângulos de mesma área (veja a Figura 6. O mesmo vale para aproximações por excesso. Como essas aproximações podem ser tornadas arbitrariamente precisas, desde que o número n de retângulos seja suficientemente grande, temos que S_a^b e S_{ka}^{kb} são, forçosamente, iguais.

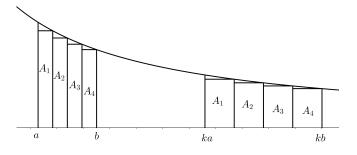


Figura 6: as áreas S_a^b e S_{ka}^{kb} podem ser aproximadas por retângulos de mesma área.

De fato, se S_a^b e S_{ka}^{kb} fossem diferentes, então um desses números seria maior do que o outro, digamos $S_a^b < S_{ka}^{kb}$.

Assim, poderíamos considerar o erro $\epsilon > 0$ dado por

$$\varepsilon = \frac{S_{ka}^{kb} - S_a^b}{2}. (5)$$

A escolha de ϵ implica que $S_a^b+\varepsilon=S_{ka}^{kb}-\varepsilon$. Por (4), existe n natural suficientemente grande tal que

$$F_a^b(n) < S_a^b < S_a^b + \varepsilon = S_{ka}^{kb} - \varepsilon < F_{ka}^{kb}(n).$$

Mas isso é uma contradição, pois $F_a^b(n)=F_{ka}^{kb}(n)$, já que os retângulos que compõem essas regiões têm as mesmas áreas.

Então, não podemos ter $S_a^b < S_{ka}^{kb}$ e, da mesma forma, não podemos ter $S_a^b > S_{ka}^{kb}$. Logo, $S_a^b = S_{ka}^{kb}$.

Uma consequência do Teorema 1 é que, tomando $k = \frac{1}{a}$, temos

$$S_a^b = S_{ka}^{kb} = S_1^c, (6)$$

onde $c = \frac{b}{a}$. Isso significa que, para calcularmos áreas de faixas de hipérbole, é suficiente considerarmos faixas de hipérbole começando na reta vertical x = 1.

Se a < b < c, temos a situação ilustrada na Figura 7 e, neste caso, é evidente que

$$S_a^b + S_b^c = S_a^c. (7)$$

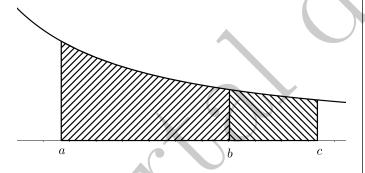


Figura 7: as faixas H_a^b e H_b^c , justapostas, geram a faixa H_a^c .

Para que a igualdade (7) contiue válida, mesmo que não ocorram as desigualdades a < b < c, devemos adotar as seguintes convenções: $S_a^a = 0$ e $S_b^a = -S_a^b$.

Assim, por exemplo, se a < c < b, temos, por comparação de áreas, que $S_a^c + S_c^b = S_a^b$, logo, $S_a^b - S_c^b = S_a^c$. Como $S_c^b = -S_b^c$, segue a igualdade (7). O mesmo procedimento pode ser feito para os outros casos.

2 Função logarítmica como área

Nesta seção, construiremos uma função $L:\mathbb{R}^+\to\mathbb{R}$ que satisfaz as condições:

- (1) L é crescente;
- (2) L(xy) = L(x) + L(y), para quaisquer $x, y \in \mathbb{R}^+$.

Definimos $L: \mathbb{R}^+ \to \mathbb{R}$ pondo

$$L(x) = S_1^x. (8$$

Vamos mostrar que a função dada em (8) satisfaz as condições (1) e (2).

Primeiro, vamos mostrar que vale (2). De fato, por (7), temos

$$L(xy) = S_1^{xy} = S_1^x + S_x^{xy}.$$

Por outro lado, segue do Teorema 1 que $S_x^{xy} = S_1^y$. Assim,

$$L(xy) = S_1^x + S_1^y = L(x) + L(y).$$

Agora vamos mostrar que L é crescente. Para isso, tomemos $x,y\in\mathbb{R}^+$ com x< y. Então $y=x\cdot\frac{y}{x},$ com $\frac{y}{x}>1$. Então $L\left(\frac{y}{x}\right)=S_1^{y/x}>0$ e

$$L(y) = L\left(x \cdot \frac{y}{x}\right) = L(x) + L\left(\frac{y}{x}\right) > L(x).$$

A função L, dada em (8) é chamada **função logaritmo natural** e é denotada por $L(x) = \ln x$ ou $L(x) = \log x$.

Algumas consequências imediatas da definição de logaritmo natural e das considerações que fizemos sobre S_a^b são as seguintes:

- (I) Se 0 < x < 1, então $\ln x < 0$ e, se 1 < x, então $\ln x > 0$. De fato, se x > 1, $\ln x = S_1^x > 0$, pois é a área da faixa sob a hipérbole equilátera de 1 a x. Se 0 < x < 1, então $\ln x = S_1^x = -S_x^1 < 0$, pois S_x^1 é a área sob a hipérbole equilátera, de x a 1.
- (II) $\ln 1 = S_1^1 = 0$.

Outra observação importante é a seguinte.

Observação 2. Uma função L que satisfaz as condições (1) e (2) é sobrejetiva.

Remetemos o leitor às sugestões de leitura complementar [1] ou [3] para uma demonstração de que L é sobrejetiva.

Como L é crescente, ela é também injetiva, logo, L é uma bijeção. Em particular, existe um único número real e tal que $\ln(e) = 1$. Esse número é, aproximadamente,

$$e \cong 2,718281828459045,$$

e é um número irracional, de importância fundamental na Matemática. O leitor pode encontrar mais informações sobre o número "e" em um livro que foi dedicado a ele: a sugestão de leitura complementar [4].

Outra consequência da bijetividade de L é que essa função admite uma inversa $E: \mathbb{R} \to \mathbb{R}^+$. Como L(xy) = L(x) + L(y), se L(x) = a e L(y) = b, então x = E(a) e y = E(b). Assim, L(xy) = a + b, ou seja, xy = E(a + b), o que é equivalente a E(a + b) = E(a)E(b). Esta é a propriedade fundamental das funções exponenciais (veja a aula Função Exponencial e Propriedades). Repetindo o que foi feito naquela aula, chegamos à conclusão que $E(t) = e^t$, para qualquer t real.

2.1 Outras bases

Seja k um número real positivo. Podemos repetir o que fizemos com as faixas de hipérbole H_a^b , situadas sob a hipérbole equilátera, e construir faixas sob o gráfico da função $f: \mathbb{R}^+ \to \mathbb{R}$, dada por $f(x) = \frac{k}{x}$. Seguindo a notação da sugestão de leitura [3], vamos escrever $H_a^b(k)$ para a faixa sob a hipérbole entre x=a e x=b. Usaremos $S_a^b(k)$ para indicar a área da faixa $H_a^b(k)$.

Como cada retângulo sob o gráfico de $f(x) = \frac{k}{x}$ pode ser obtido a partir de um retângulo sob o gráfico de $y = \frac{1}{x}$ multiplicando-se sua altura por k. A área $S_a^b(k)$, podendo ser arbitrariamente aproximada pela soma das áreas desses retângulos, é igual a $k \cdot S_a^b$. Dessa forma, as propriedades de S_a^b se repetem para $S_a^b(k)$.

Se $L: \mathbb{R}^+ \to \mathbb{R}$, é dada por $L(x) = S_1^x(k) = k \cdot S_1^x = k \cdot \ln x$, então L é uma função que satisfaz as condições (1) e (2) exibidas no início desta seção. Essa função L também é bijetiva, logo existe um único $a \in \mathbb{R}$, a > 0, tal que L(a) = 1. Da igualdade $L(x) = k \cdot \ln x$, segue que $1 = L((a) = k \cdot \ln a$, ou seja, $k = \frac{1}{\ln a}$. Como estamos supondo que k é positivo, temos que $\ln a > 0$, $\log a > 1$.

O número real a é chamado **base** da função logarítmica L e denotamos $L(x) = \log_a x$. Pelo que vimos acima,

$$\log_a x = \frac{\ln x}{\ln a}.$$

No caso em que k < 0, as considerações feitas acima podem ser repetidas, com a única diferença que as "áreas" consideradas, neste caso, têm sinal negativo. Como $\ln a = \frac{1}{k}$, temos que, neste caso, 0 < a < 1 e a função $L(x) = \log_a x$ é decrescente, como já vimos na parte 2 desta aula.

Dess
sa forma, todas as funções logarítmicas podem ser obtidas a partir da função
 $natural \ln x.$

Dicas para o Professor

A presente aula pode ser coberta em dois encontros de 50 minutos.

Com esta terceira parte, encerramos nossa aula introdutória sobre logaritmos e funções logarítmicas. Esta parte três deve ser encarada como um convite à leitura das sugestões a seguir, que expandem e aprofundam o assunto.

As vantagens da introdução da função logarítmica por meio de áreas são delineadas na introdução da referência

[3]. Nesta referência, assim como na sugestão de leitura [2], o tratamento é elementar, sem uso explícito do cálculo. Nas sugestões [1] e 5, o tratamento é mais formal, usando a noção de integral. A sugestão [4] é um livro de divulgação bastante interessante, que conta a história do número "e" e das pessoas que o estudaram.

Tentamos explicar, neste pequeno texto, apenas aquilo que julgamos ser o essencial nessa abordagem, ou seja, que uma função logarítmica pode ser definida como "área" sob a hipérbole. Acreditamos que, se você conseguir apresentar essa ligação aos seus estudantes, eles terão um bom exemplo de uma conexão inesperada entre partes distintas da Matemática.

Sugestões de Leitura Complementar

- A. Caminha. Tópicos de Matematica Elementar, vol. 3, segunda edição. SBM, Rio de Janeiro, 2013.
- A.I. Markushevich, Areas y Logaritmos, Lecciones Populares de Matemáticas, Ed. Mir, Moscou, 1975.
- 3. E. L. Lima. Logaritmos. SBM, Rio de Janeiro, 1991.
- 4. Eli Maor. e: a história de um número, Ed. Record, Rio de Janeiro, 2005.
- Peter Lax, et. al. Cálculo, Aplicações e Programação, vol.1, Ed. Guanabara Dois, Rio de Janeiro, 1979.