Material Teórico - Módulo Progressões Geométricas

A Soma dos Termos de uma PG Ininita

Primeiro Ano

Autor: Prof. Ulisses Lima Parente Autor: Prof. Antonio Caminha M. Neto

1 A soma dos termos de uma PG finita

Dando continuidade a nosso estudo de progressões geométricas, concentraremos nossos esforços aqui em obter uma fórmula que nos permita calcular a soma dos termos de uma PG infinita, desde que tal soma faça sentido.

Vimos nas aulas anteriores que a soma dos termos de uma PG finita (a_1, a_2, \ldots, a_n) , com razão $q \neq 1$, é dada pela fórmula

$$a_1 + a_2 + \dots + a_n = \frac{a_{n+1} - a_1}{q - 1} = a_1 \cdot \frac{1 - q^n}{1 - q}.$$
 (1)

A fim de ilustrar a extrapolação de (1) a certas PGs infinitas, apliquemos a fórmula acima ao caso da progressão

$$\left(\frac{1}{2},\frac{1}{4},\frac{1}{8},\ldots\right).$$

Denotando por S_n a soma de seus n primeiros termos, segue daquela fórmula que

$$S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$

$$= \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}}$$

$$= 1 - \frac{1}{2^n}.$$

Agora, examinemos os valores de $\frac{1}{2^n}$ e S_n , para n respectivamente igual a 2, 3, 4, ..., 8. Os valores correspondentes (obtidos com o auxílio de uma calculadora) estão colecionados na tabela abaixo:

n	$1/2^{n}$	S_n
2	0, 25	0,75
3	0,125	0,875
4	0,0625	0,9375
5	0,03125	0,96875
6	0,015625	0,984375
7	0,0078125	0,9921875
8	0,00390625	0,99609375

Da tabela acima, vemos que quanto maior o valor de n menor é o valor de $\frac{1}{2^n}$. Além disso, à medida que n aumenta, aparentemente os valores de $\frac{1}{2^n}$ se aproximam cada vez mais de 0, de sorte que os valores de S_n se aproximam cada vez mais de 1.

Esse é realmente o caso. De fato, se quisermos que

$$0 < 1 - S_n < \frac{1}{100.000},$$

por exemplo, basta observarmos que, como como $2^4>10,$ temos

$$2^{20} = (2^4)^5 > 10^5 = 100.000;$$

assim.

$$n \ge 20 \Longrightarrow 2^n \ge 2^{20} > 100.000$$
$$\Longrightarrow \frac{1}{2^n} < \frac{1}{100.000}.$$

Portanto,

$$n \ge 20 \Longrightarrow 0 < 1 - S_n < \frac{1}{100.000},$$

de sorte que a diferença entre S_n e 1 só aparece na sexta casa decimal.

Graças à discussão acima, definimos o valor da soma infinita

$$S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

como sendo igual a 1:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1. \tag{2}$$

Um outro modo, desta vez geometricamente intuitivo, de ver que a soma S dada acima vale 1 é o seguinte: suponha que um quadrado de lado 1cm é dividido em dois retângulos de lados $\frac{1}{2}$ cm e 1cm cada, e que descartamos um desses retângulos, cuja área vale $\frac{1}{2}$ cm².

Em seguida, o outro retângulo é dividido em dois quadrados de lado $\frac{1}{2}$ cm, e também descartamos um desses quadrados, cuja área vale $\frac{1}{4}$ cm².

A essa altura, a soma das áreas das figuras descartadas é $\frac{1}{2} + \frac{1}{4}$ (veja a figura 1).

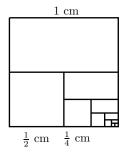


Figura 1: interpretando geometricamente a soma S.

Repetindo esse procedimento n vezes, obtemos que a soma das áreas das figuras descartadas é dada por

$$S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}.$$

Intuitivamente, percebemos que a área da figura que sobra depois de efetuarmos n descartes fique cada vez mais próxima de zero, ou seja, que a soma das áreas das figuras que foram descartadas fique cada vez mais próxima da área do quadrado, que vale $1 \, \mathrm{cm}^2$. Isso sugere a validade da igualdade

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1.$$

Generalizamos a discussão acima com a proposição a seguir, cuja demonstração pode ser omitida numa primeira leitura. A fórmula (3) a seguir é conhecida como a **soma dos termos de uma PG infinita**.

Proposição 1. Se $(a_1, a_2, a_3, ...)$ é uma PG de razão |q| < 1, então vale:

$$a_1 + a_2 + a_3 + \dots = \sum_{k=1}^{+\infty} a_k = \frac{a_1}{1 - q}.$$
 (3)

Antes de provarmos a proposição acima, observamos que o sentido da igualdade (3) deve ser entendido da mesma forma que (2), isto é, pondo

$$S_n = a_1 + a_2 + \dots + a_n,$$

temos de mostrar que a diferença entre S_n e $\frac{a_1}{1-q}$ se aproxima cada vez mais de 0, à medida que n aumenta.

Para conseguirmos mostrar isso, faremos essencialmente o mesmo que fizemos na discussão que levou a (2); a diferença é que será mais difícil estimar o tamanho de $|q|^n$ do que foi estimar o tamanho de 2^n .

Prova. Se q=0, não precisamos fazer nada. Suponha, portanto, que 0<|q|<1. Segue de (1) que

$$\begin{vmatrix} S_n - \frac{a_1}{1 - q} \end{vmatrix} = \left| a_1 \cdot \frac{1 - q^n}{1 - q} - \frac{a_1}{1 - q} \right| \\
= \left| \frac{a_1 q^n}{1 - q} \right| = \left| \frac{a_1}{1 - q} \right| \cdot |q|^n.$$
(4)

Agora, observe que $0<|q|<1\Rightarrow \frac{1}{|q|}>1,$ de forma que podemos escrever

$$\frac{1}{|q|} = 1 + a,$$

para algum a > 0. Então, para n > 1, temos

$$\frac{1}{|q|^n} = (1+a)^n = \underbrace{(1+a)\dots(1+a)}_{n \text{ vezes}}$$
$$= 1 + na + (\text{soma de parcelas positivas})$$
$$> na,$$

o que é o mesmo que $|q|^n < \frac{1}{na}$ De volta a (4), vemos que

$$\left| S_n - \frac{a_1}{1-q} \right| = \left| \frac{a_1}{1-q} \right| \cdot |q|^n < \left| \frac{a_1}{1-q} \right| \cdot \frac{1}{na}.$$

Agora, a constante $\left| \frac{a_1}{1-q} \right| \cdot \frac{1}{a}$ é menor do que alguma potência de 10, digamos 10^k , para alguma constante k; isso nos dá

$$\left| S_n - \frac{a_1}{1 - q} \right| < 10^k \cdot \frac{1}{n}.$$

Então, se quisermos que a diferença entre os valores de S_n e $\frac{a_1}{1-q}$ só apareça a partir da m–ésima casa decimal, basta pedirmos que

$$10^k \cdot \frac{1}{n} < \frac{1}{10^m}$$

isto é, que $n > 10^{m+k}$.

Em resumo, o argumento acima mostra que, sendo $\left|\frac{a_1}{1-q}\right|\cdot\frac{1}{a}<10^k$, então, dado $m\in\mathbb{N}$, temos

$$\left| S_n - \frac{a_1}{1 - q} \right| < 10^k \cdot \frac{1}{n} < \frac{1}{10^m}$$

para todo $n > 10^{m+k}$.

Logo, podemos tornar as somas S_n tão próximas quanto queiramos de $\frac{a_1}{1-q}$, bastando, para tanto, tomar n suficientemente grande. Mas, como vimos imediatamente antes da demonstração, esse é precisamente o sentido da igualdade (3).

Observação 2. Quando a razão q de uma PG infinita satisfaz $|q| \ge 1$ e seu primeiro termo a_1 é não nulo, não é possível dar um sentido à soma infinita

$$a_1 + a_2 + a_3 + \cdots$$
.

Ademais, se $a_1 > 0$ e q > 1, então as somas finitas $S_n = a_1 + a_2 + \cdots + a_n$ ficam tão grandes quanto queiramos, bastando tomar n suficientemente grande.

No restante deste material, discutimos algumas aplicações da Proposição 1.

Exemplo 3. Calcule a soma dos termos da PG

$$\left(2,\frac{2}{3},\frac{2}{9},\ldots\right).$$

Solução. Temos $a_1 = 2$ e $q = \frac{2}{3} \div 2 = \frac{1}{3}$. Portanto, utilizando (3), obtemos:

$$2 + \frac{2}{3} + \frac{2}{9} + \dots = \frac{2}{1 - \frac{1}{3}} = \frac{2}{\frac{2}{3}} = 3.$$

Exemplo 4. Calcule, se estiver definida, a soma dos termos da PG infinita cujo primeiro e segundo termos são, nessa ordem, $\frac{\sqrt{5}}{\sqrt{5}+1}$ e $\frac{\sqrt{5}}{\sqrt{5}+5}$.

Solução. Temos
$$a_1 = \frac{\sqrt{5}}{\sqrt{5} + 1}$$
 e

$$\begin{split} q &= \frac{\sqrt{5}}{\sqrt{5} + 5} \div \frac{\sqrt{5}}{\sqrt{5} + 1} \\ &= \frac{\sqrt{5}}{\sqrt{5} + 5} \cdot \frac{\sqrt{5} + 1}{\sqrt{5}} \\ &= \frac{1 + \sqrt{5}}{5 + \sqrt{5}} = \frac{1 + \sqrt{5}}{\sqrt{5}(\sqrt{5} + 1)} \\ &= \frac{1}{\sqrt{5}} < 1. \end{split}$$

Portanto, a soma S da PG infinita em questão tem sentido e, invocando uma vez mais a fórmula da Proposição 1, obtemos:

$$S = \frac{\frac{\sqrt{5}}{\sqrt{5}+1}}{1 - \frac{1}{\sqrt{5}}} = \frac{\frac{\sqrt{5}}{\sqrt{5}+1}}{\frac{\sqrt{5}-1}{\sqrt{5}}}$$
$$= \frac{\sqrt{5}}{\sqrt{5}+1} \cdot \frac{\sqrt{5}}{\sqrt{5}-1}$$
$$= \frac{\sqrt{5}^2}{\sqrt{5}^2 - 1^2} = \frac{5}{4}.$$

Exemplo 5. Calcule a soma dos termos da PG infinita

$$\left(\frac{2}{5}, -\frac{1}{5}, \frac{1}{10}, -\frac{1}{20}, \ldots\right)$$
.

Solução. Neste caso, temos $a_1 = \frac{2}{5}$ e

$$q = -\frac{1}{5} \div \frac{2}{5} = -\frac{1}{5} \cdot \frac{5}{2} = -\frac{1}{2}.$$

Observe que |q|<1,o que permite que utilizemos novamente a Proposição 1:

$$\frac{2}{5} - \frac{1}{5} + \frac{1}{10} - \dots = \frac{\frac{2}{5}}{1 - \left(-\frac{1}{2}\right)} = \frac{\frac{2}{5}}{1 + \frac{1}{2}}$$
$$= \frac{\frac{2}{5}}{\frac{3}{2}} = \frac{2}{5} \cdot \frac{2}{3} = \frac{4}{15}.$$

Exemplo 6. Seja (a_1, a_2, a_3, \ldots) uma PG infinta tal que $a_1 = 2$. Se a soma dos termos da PG é igual a $\frac{11}{2}$, encontre o valor de sua razão q.

Solução. Chamando de S a soma dos termos da PG, segue de (3) que

$$\frac{11}{2} = S = \frac{a_1}{1 - a} = \frac{2}{1 - a}.$$

Daí, obtemos

$$11 - 11q = 4 \Longrightarrow 11q = 7 \Longrightarrow q = \frac{7}{11}.$$

Para o próximo exemplo, observe que um decimal infinito

$$0, a_1 a_2 a_3 \dots, \tag{5}$$

(isto é, tal que o algarismo a_n é não nulo para infinitos valores de n) é uma abreviação para a soma infinita

$$\frac{a_1}{10} + \frac{a_2}{10^2} + \frac{a_3}{10^3} + \cdots (6)$$

Em Matemática, somas infinitas da forma acima são denominadas **séries**, mas seu estudo está bem além do propósito destas notas. Se, contudo, o decimal (5) for uma dízima periódica, então (6) se reduz à soma dos termos de uma PG infinita, com razão de módulo menor que 1. Nosso último exemplo esclarece esse ponto.

Exemplo 7. Quais as frações geratrizes das dízimas periódicas 0,777...e 0,4323232...?

Solução. Para a primeira dízima, observe que

$$0,777... = 0,7+0,07+0,007+...$$
$$= \frac{7}{10} + \frac{7}{1000} + \frac{7}{1000} + \cdots,$$

ou seja, a dízima 0,777... é a soma dos termos da PG infinita que tem $a_1=\frac{7}{10}$ e $q=\frac{1}{10}$. Portanto,

$$0,777\ldots = \frac{\frac{7}{10}}{1 - \frac{1}{10}} = \frac{\frac{7}{10}}{\frac{9}{10}} = \frac{7}{10} \cdot \frac{10}{9} = \frac{7}{9}.$$

A segunda dízima pode ser tratada de modo inteiramente análogo:

$$0,4323232... = 0,4+0,032+0,00032+...$$

$$= \frac{4}{10} + \frac{32}{1.000} + \frac{32}{100.000} + \cdots$$

$$= \frac{4}{10} + \frac{\frac{32}{1.000}}{1 - \frac{1}{100}}$$

$$= \frac{4}{10} + \frac{32}{1.000} \cdot \frac{100}{99}$$

$$= \frac{4}{10} + \frac{32}{990} = \frac{428}{990}$$

$$= \frac{214}{495}.$$

Dicas para o Professor

Recomendamos que sejam utilizadas duas sessões de 50min para discutir o conteúdo deste material. Explique cuidadosamente aos alunos que, quando a razão q de uma PG tem módulo menor do que 1, então as potências q^n se aproximam de 0, pois esse fato é crucial para o entendimento da fórmula dada na Proposição 1. Entretanto, numa primeira apresentação, melhor do que tentar fazer os alunos compreenderem a demonstração apresentada para este resultado, é adaptar o argumento apresentado para a PG $\left(\frac{1}{2},\frac{1}{4},\frac{1}{8},\dots\right)$ para calcular as somas das PGs infinitas

$$\Big(\frac{1}{2},\frac{1}{6},\frac{1}{18},\dots\Big) \ \ \mathrm{e} \ \ \Big(1,\frac{2}{3},\frac{4}{9},\frac{8}{27},\dots\Big).$$

A análise desses três casos deve bastar para convencer os alunos de que (3) é válida em geral.

As referências [3] e [4] contém muitos exemplos e problemas, de variados graus de dificuldade, relacionados ao conteúdo do presente material. O capítulo 1 de [2] traz uma discussão heurística da relação entre o decimal infinito (5) e a soma infinita (6); tal discussão é colocada em bases sólidas no capítulo 3 de [1].

Sugestões de Leitura Complementar

- A. Caminha. Tópicos de Matemática Elementar, Volume 3: Introdução à Análise, 2ª Edição. Rio de Janeiro, SBM, 2013.
- A. Caminha. Tópicos de Matemática Elementar, Volume 1: Números Reais, 2ª Edição. Rio de Janeiro, SBM, 2013.
- 3. G. Iezzi, S. Hazzan. Os Fundamentos da Matemática Elementar, Volume 4: Sequências, Matrizes, Determinantes, Sistemas. São Paulo, Atual Editora, 2012.
- E. Lima, P. Carvalho, E. Wagner, A. Morgado, A Matemática do Ensino Médio, Volume 2, 5ª Edição. Rio de Janeiro, SBM, 2004.

