Material Teórico - Módulo Aritmética dos Restos

Aritmética Modular - Parte 2

Tópicos Adicionais

Autor: Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

19 de abril de 2023

Na parte 1 deste material, apresentamos o conjunto

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\},\$$

formado pelas **classes de restos módulo** n, em que n é um número inteiro positivo. Recordamos que um número inteiro a pertence a \overline{r} quando r é o resto na divisão de a por n.

Agora, vamos estender o conceito de classe de resto a qualquer número inteiro, definindo \overline{a} como o subconjunto de $\mathbb Z$ formado pelos números que deixam o mesmo resto que a quando divididos por n. Assim, se a e b são números inteiros, temos $\overline{a}=\overline{b}$ se, e somente se, a e b deixam o mesmo resto quando divididos por n.

Os conjuntos \overline{a} também são denominados **classe de resíduos módulo** n. Veja que a e b deixam o mesmo resto na divisão por n se, e somente se, $a \equiv b \pmod{n}$. Logo, temos que

$$\overline{a} = \overline{b} \Longleftrightarrow a \equiv b \pmod{n}$$
.

Recordemos as seguintes propriedades das congruências, as quais também foram apresentadas na primeira parte deste material:

- (i) Se a, b, c, d e n > 0 são números inteiros, então $a \equiv c \pmod{n} \text{ e } b \equiv d \pmod{n} \Longrightarrow a + b \equiv c + d \pmod{n}.$
- (ii) Se a, b, c, d e n>0 são números inteiros, então $a\equiv c(\bmod n) \text{ e } b\equiv d(\bmod n)\Longrightarrow a\cdot b\equiv c\cdot d(\bmod n).$

Essas duas propriedades nos permitem definir as operações de adição e multiplicação de classes de restos, ademais da seguinte forma:

$$\overline{a} + \overline{b} = \overline{a + b}$$
 e $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$.

Por exemplo, em \mathbb{Z}_4 , temos

$$\overline{2} + \overline{3} = \overline{5} = \overline{1}$$
 e $\overline{2} \cdot \overline{3} = \overline{6} = \overline{2}$.

As tabelas a seguir apresentam todas as possíveis somas e produtos em \mathbb{Z}_4 :

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$		$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	3		$\overline{0}$			
$\overline{1}$	1	$\overline{2}$	$\overline{3}$	$\overline{0}$		$\overline{0}$			
	$\overline{2}$					$\overline{0}$			
$\overline{3}$	$\overline{3}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

Perceba que $\overline{0}$ funciona como elemento neutro da adição e $\overline{1}$ funciona como elemento neutro da multiplicação em \mathbb{Z}_4 . Além disso, diferentemente do que acontece com a multiplicação de números inteiros, temos a possibilidade de a multiplicação de duas classes diferentes de $\overline{0}$ resultar em $\overline{0}$. De fato, temos $\overline{2} \cdot \overline{2} = \overline{4} = \overline{0}$.

Note também que $\overline{3} \cdot \overline{3} = 1$. Por isso, dizemos que 3 é igual ao seu próprio **inverso multiplicativo** módulo 4. De modo geral, dizemos que \overline{b} é o **inverso** de \overline{a} se $\overline{a} \cdot \overline{b} = \overline{1}$.

É claro que, qualquer que seja n>1, a classe $\overline{1}$ é sempre igual a seu próprio inverso módulo n; por outro lado, $\overline{0}$ não possui inverso módulo n.

Observando a tabela da multiplicação módulo 4, notamos ainda que $\overline{2}$ não possui inverso, pois na linha dessa classe não aparece $\overline{1}$ como resultado. Logo, as únicas classes que possuem inverso módulo 4 são $\overline{1}$ e $\overline{4}$.

Já em \mathbb{Z}_5 , temos $\overline{4} + \overline{3} = \overline{7} = \overline{2}$ e $\overline{2} \cdot \overline{3} = \overline{6} = \overline{1}$. Veja, a seguir, as tabelas da adição e multiplicação em \mathbb{Z}_5 .

+	$\bar{0}$	1	$\overline{2}$	$\overline{3}$	$\overline{4}$		$\overline{0}$	1	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{0}$										$\overline{0}$	
$\overline{1}$	1	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{0}$					$\overline{3}$	
$\frac{1}{2}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{0}$	$\overline{1}$					$\overline{1}$	
$\overline{3}$	3	$\overline{4}$	$\overline{0}$	$\overline{1}$	$\overline{2}$					$\overline{4}$	
$\overline{4}$	$\overline{4}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

Observando as linhas da tabela da multiplicação em \mathbb{Z}_5 , podemos notar que os inversos de $\overline{2}$, $\overline{3}$ e $\overline{4}$ são respectivamente iguais a $\overline{3}$, $\overline{2}$ e $\overline{4}$.

Agora, veja a tabela completa da multiplicação em \mathbb{Z}_{10} :

	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{8}$	$\overline{9}$
0	$\overline{0}$	0	0	$\overline{0}$	0	0	$\overline{0}$	0	0	$\overline{0}$
$\overline{1}$	$\overline{0}$	1	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	8	$\overline{9}$
$\frac{\overline{2}}{\overline{3}}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{6}$	$\overline{8}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{6}$	$\overline{8}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{6}$	$\overline{9}$	$\overline{2}$	$\overline{5}$	8	$\overline{1}$	$\overline{4}$	$\overline{7}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{8}$	$\overline{2}$	$\overline{6}$	$\overline{0}$	$\overline{4}$	$\overline{8}$	$\overline{2}$	$\overline{6}$
$\overline{5}$	$\overline{0}$	$\overline{5}$	$\overline{0}$	$\overline{5}$	$\overline{0}$	$\overline{5}$	$\overline{0}$	$\overline{5}$	$\overline{0}$	$\overline{5}$
$\overline{6}$	$\overline{0}$	$\overline{6}$	$\overline{2}$	$\overline{8}$	$\overline{4}$	$\overline{0}$	$\overline{6}$	$\overline{2}$	$\overline{8}$	$\overline{4}$
$\overline{7}$	$\overline{0}$	$\overline{7}$	$\overline{4}$	$\overline{1}$	$\overline{8}$	$\overline{5}$	$\overline{2}$	$\overline{9}$	$\overline{6}$	3
$\overline{8}$	$\overline{0}$	$\overline{8}$	$\overline{6}$	$\overline{4}$	$\overline{2}$	$\overline{0}$	8	$\overline{6}$	$\overline{4}$	$\bar{2}$
$\overline{9}$	$\overline{0}$	$\overline{9}$	8	$\overline{7}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\bar{2}$	1

Observando as linhas dessa tabela, percebemos que os inversos de $\overline{3}$, $\overline{7}$ e $\overline{9}$ são respectivamente iguais a $\overline{7}$, $\overline{3}$ e $\overline{9}$. As demais classes não possuem inverso. Veja que 1, 3, 7 e 9 são os números naturais menores do que 10 e que não possuem fatores primos em comum com 10, ou seja, que são relativamente primos com 10.

Vejamos, agora, a tabela das multiplicações em \mathbb{Z}_{11} :

	$\overline{0}$	1 、	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{8}$	$\overline{9}$	$\overline{10}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	Ī	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	8	$\overline{9}$	$\overline{10}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{6}$	8	$\overline{10}$	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$	$\overline{9}$
$\overline{3}$	$\bar{0}$	$\overline{3}$	$\overline{6}$	$\overline{9}$	$\overline{1}$	$\overline{4}$	$\overline{7}$	$\overline{10}$	$\overline{2}$	$\overline{5}$	$\overline{8}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{8}$	$\overline{1}$	$\overline{5}$	$\overline{9}$	$\overline{2}$	$\overline{6}$	$\overline{10}$	$\overline{3}$	$\overline{7}$
$\overline{5}$	$\overline{0}$	$\overline{5}$	$\overline{10}$	$\overline{4}$	$\overline{9}$	$\overline{3}$	8	$\overline{2}$	$\overline{7}$	$\overline{1}$	$\overline{6}$
$\overline{6}$	$\overline{0}$	$\overline{6}$	$\overline{1}$	$\overline{7}$	$\overline{2}$	8	$\overline{3}$	$\overline{9}$	$\overline{4}$	$\overline{10}$	$\overline{5}$
$\overline{7}$	$\overline{0}$	$\overline{7}$	$\overline{3}$	$\overline{10}$	$\overline{6}$	$\overline{2}$	$\overline{9}$	$\overline{5}$	$\overline{1}$	8	$\overline{4}$
$\overline{8}$	$\overline{0}$	$\overline{8}$	$\overline{5}$	$\overline{2}$	$\overline{10}$	$\overline{7}$	$\overline{4}$	$\overline{1}$	$\overline{9}$	$\overline{6}$	$\overline{3}$
$\overline{9}$	$\overline{0}$	$\overline{9}$	$\overline{7}$	$\overline{5}$	$\overline{3}$	$\overline{1}$	$\overline{10}$	8	$\overline{6}$	$\overline{4}$	$\overline{2}$
$\overline{10}$	$\overline{0}$	$\overline{10}$	$\overline{9}$	8	$\overline{7}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

Na tabela de multiplicações em \mathbb{Z}_{11} , podemos observar que todas as classes possuem inverso, exceto $\overline{0}$.

Como você já deve ter notado, a existência do inverso multiplicativo de uma classe de restos \overline{a} , módulo n, está fortemente ligada ao fato de os números inteiros a e n não possuírem fatores primos em comum. Mais precisamente, temos a seguinte

Proposição 1. Sejam a e n inteiros, com n > 1. Então, \overline{a} possui inverso multiplicativo módulo n se, e somente se, $\operatorname{mdc}(a,n) = 1$.

Prova. Invocaremos um importante resultado visto no módulo "Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas": sejam p e q números inteiros. Então $\mathrm{mdc}\,(p,q)=1$ se, e somente se, existe um par de inteiros r e s tal que pr+qs=1.

Assim, se $\operatorname{mdc}(a,n)=1$, então existe um par de inteiros r e s tal que ar+ns=1. Daí, obtemos

$$\overline{1} = \overline{ar + ns}$$

$$= \overline{ar} + \overline{ns}$$

$$= \overline{a} \cdot \overline{r} + \overline{n} \cdot \overline{s}$$

$$= \overline{a} \cdot \overline{r} + \overline{0} \cdot \overline{s}$$

$$= \overline{a} \cdot \overline{r}.$$

Dessa forma, \overline{r} é o inverso de \overline{a} .

Por outro lado, admitindo que \overline{a} possua inverso e denotando por \overline{b} essa classe, temos que $\overline{ab} = \overline{a} \cdot \overline{b} = \overline{1}$ módulo n. Desse modo, o produto ab deixa resto 1 quando dividido por n. Assim, $n \mid (ab-1)$, de sorte que existe c inteiro tal que ab-1=nc. Portanto, ab-nc=1, donde concluímos que $\mathrm{mdc}\,(a,n)=1$.

No que segue, utilizaremos a noção de inverso multiplicativo, módulo n (quando tal inverso existir) para resolver congruências do tipo

$$ax \equiv b \pmod{n}$$
,

as quais são denominadas **conguências lineares**. Antes, porém, vamos entender o que significa *resolver* uma congruência desse tipo.

Inicialmente, recordemos a ideia utilizada para resolver uma equação do tipo ax = b em \mathbb{R} , em que $a \neq 0$ e b são números reais: multiplicamos os dois lados da igualdade pelo inverso multiplicativo de a para obter

$$ax = b \iff a^{-1}ax = a^{-1} \cdot b$$

$$\iff 1 \cdot x = \frac{b}{a}$$

$$\iff x = \frac{b}{a}.$$

Assim $x = \frac{b}{a}$ é a única solução da equação ax = b. Também podemos resolver eessa equação da seguinte maneira:

$$ax = b \iff ax = 1 \cdot b$$

$$\iff ax = a \cdot a^{-1} \cdot b$$

$$\iff ax = a \cdot a^{-1} \cdot b$$

$$\iff x = a^{-1} \cdot b$$

$$\iff x = \frac{b}{a}.$$

Essa estratégia é conhecida como "Lei do cancelamento", ferramenta bastante utilizada para resolver problemas que envolvem equações com coeficientes reais. Por exemplo, para resolver a equação 2x=6, podemos escrever $2x=2\cdot 3$ e aplicar a lei do cancelamento para obter

$$2x = 2 \cdot 3 \iff x = 3.$$

De modo similar, resolver a congruência $ax \equiv b \pmod{n}$, em que a, b e n > 0 são números inteiros, significa encontrar os números inteiros x que satisfazem essa congruência, ou seja, $\overline{ax} = \overline{b}$ modulo n.

Entretanto, se encontrarmos uma solução, teremos, de fato, uma infinidade delas, pois se $ax_1 \equiv b \pmod{n}$, então $ax_2 + \kappa n \equiv b \pmod{n}$, $\forall \kappa \in \mathbb{Z}$.

Assim, para que os números inteiros x_1 e x_2 representem soluções diferentes de $ax \equiv b \pmod{n}$, devemos ter $\overline{x_1} \neq \overline{x_2}$, ou seja, $x_1 \not\equiv x_2 \pmod{n}$.

Ao tentar resolver a congruência linear $2x \equiv 8 \pmod{6}$ utilizando a lei do cancelamento, obteríamos

$$2x \equiv 8 \pmod{6} \iff 2x \equiv 2 \cdot 4 \pmod{6} \iff x \equiv 4 \pmod{6}.$$

De fato, qualquer número inteiro que seja congruente a 4 módulo 6 é solução de $2x \equiv 8 \pmod{6}$, pois, utilizando as propriedades das congruências apresentadas no material anterior, temos que

$$x \equiv 4 \pmod{6} \Longrightarrow 2x \equiv 2 \cdot 4 \pmod{6}$$

 $\Longrightarrow 2x \equiv 8 \pmod{6}.$

O problema aqui é que $x\equiv 4(\bmod{6})$ não é a única solução da congruência $2x\equiv 8(\bmod{6})$. De fato, utilizando as propriedades das congruências, temos

$$x \equiv 7 \pmod{6} \Longrightarrow 2x \equiv 2 \cdot 7 \pmod{6}$$
$$\Longrightarrow 2x \equiv 14 \pmod{6}$$
$$\Longrightarrow 2x \equiv 8 \pmod{6}.$$

Desse modo, diferentemente do que acontece com as equações lineares, a lei do cancelamento não se aplica às congruências lineares. Entretanto, podemos utilizar a proposição 1, para resolver congruências do tipo $ax \equiv b \pmod{n}$, quando $\operatorname{mdc}(a,n) = 1$. Com efeito, se \overline{a} possui inverso multiplicativo, digamos \overline{c} , então

$$ax \equiv b \pmod{n} \iff \overline{ax} = \overline{b}$$

$$\iff \overline{a} \cdot \overline{x} = \overline{b}$$

$$\iff \overline{c} \cdot \overline{a} \cdot \overline{x} = \overline{c} \cdot \overline{b}$$

$$\iff \overline{1} \cdot \overline{x} = \overline{c} \cdot \overline{b}$$

$$\iff \overline{x} = \overline{bc}.$$

Perceba que os cálculos que fizemos acima escondem uma lei do cancelamento em \mathbb{Z}_n . Realmente, observando-os com

atenção, podemos concluir que

$$ax \equiv b \pmod{n} \iff \overline{a} \cdot \overline{x} = \overline{1} \cdot \overline{b}$$

$$\iff \overline{a} \cdot \overline{x} = \overline{a} \cdot \overline{c} \cdot \overline{b}$$

$$\iff \overline{p} \cdot \overline{x} = \overline{p} \cdot \overline{c} \cdot \overline{b}$$

$$\iff \overline{1} \cdot \overline{x} = \overline{c} \cdot \overline{b}$$

$$\iff \overline{x} = \overline{bc}.$$

Dicas para o Professor

Sugerimos que sejam utilizadas duas sessões de 50min para expor o conteúdo deste material. Recomendamos que os professores proponham aos alunos a tarefa de construir tabelas com as operações de adição e multiplicação de outros sistemas completos de restos, por exemplo, \mathbb{Z}_7 e \mathbb{Z}_8 . É importante que os alunos saibam quais são as classes que possuem inverso multiplicativo. O estudo desses casos particulares facilita o entendimento da proposição 1.

As referências a seguir contém mais sobre classes de resíduos e suas aplicações.

Sugestões de Leitura Complementar

- 1. A. C. Muniz Neto. *Tópicos de Matemática Elementar,* Volume 5: Teoria dos Números, terceira edição. Rio de Janeiro, SBM, 2022.
- D. Fomim, S. Genkin e I. Itenberg. Círculos Matemáticos: A Experiência Russa. Rio de Janeiro, IMPA 2012.