Material Teórico - Módulo de Introdução ao Cálculo - Funções Contínuas

Exercícios - Parte III

Tópicos Adicionais

Autor: Tiago Caúla Ribeiro Revisor: Prof. Antonio Caminha M. Neto

10 de Julho de 2024

Conforme antecipado no material anterior, essa terceira parte explora exemplos que envolvem a noção de continuidade e orbitam em torno do teorema dos valores extremos.

1 Exemplos

Na penúltima aula, estudamos o teorema dos valores extremos: se $f:[a,b] \to \mathbb{R}$ é contínua, então existem $x_0, x_1 \in [a,b]$ tais que

$$f(x_0) \le f(x) \le f(x_1)$$

para todo $x \in [a,b]$, ou seja, a função f assume valores máximo e mínimo no intervalo [a,b].

Em particular, toda função contínua definida em um intervalo do tipo [a,b] é limitada.

Exemplo 1. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e periódica. Mostre que f é limitada.

Solução. ¹ Seja T > 0 um período de f.

Como vimos acima, a restrição da função f ao intervalo [0,T] deve ser limitada, digamos, $|f(u)| \leq M$ para todo $u \in [0,T]$ e uma certa constante M>0.

Afirmamos que $|f| \leq M$ em toda a reta. De fato, dado $x \in \mathbb{R}$ arbitrário, escreva x = u + nT, com n inteiro e $u \in [0,T)$ (basta pôr $n = \lfloor x/T \rfloor$ e u = x - nT). Daí, o fato de T ser um período de f garante que

$$|f(x)| = |f(u + nT)| = |f(u)| \le M,$$

o que prova a afirmação e encerra a demonstração. $\hfill \Box$

Para o próximo exemplo, fixado um vetor v no plano, a translação por v é a transformação T_v do plano no plano que a cada ponto A associa o único ponto $T_v(A) =: B$ satisfazendo $\overrightarrow{AB} = v$.

 $^{^1\}mathrm{Reveja}$ a solução do exemplo 11 da aula anterior.

Fixado um sistema de coordenadas cartesianas no plano de modo que P=(x,y) e v=(a,b), não é difícil mostrar que ²

$$T_v(x,y) = (x+a, y+b).$$

Exemplo 2. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua cujo gráfico G_f é invariante por uma translação T_v , ou seja, $T_v(G_f) \subset G_f$. Se T_v for diferente da identidade (isto é, se $v \neq 0$), mostre que o limite

$$\lim_{x \to +\infty} \frac{f(x)}{x}$$

existe e é finito.

Solução. Conforme a discussão anterior, podemos supor que $T_v(x,y)=(x+a,y+b)$, para todos $x,y\in\mathbb{R}$ e certas constantes reais a e b.

Um ponto típico do gráfico de f é da forma (x, f(x)), para algum $x \in \mathbb{R}$. Como $T_v(x, f(x)) = (x + a, f(x) + b)$ deve ser um ponto do gráfico de f, a função deve satisfazer a equação funcional

$$f(x+a) = f(x) + b, \ \forall \ x \in \mathbb{R}.$$

Sendo v=(a,b) um vetor não nulo, temos $a\neq 0$ ou $b\neq 0$. Se tivéssemos a=0, a relação f(x+a)=f(x)+b implicaria f(x)=f(x)+b, logo, b=0, o que é impossível. Portanto, $a\neq 0$.

Definindo a função contínua $\phi : \mathbb{R} \to \mathbb{R}$ por $\phi(x) = f(x) - bx/a$, segue da equação funcional satisfeita por f que

$$\phi(x+a) = f(x+a) - \frac{b(x+a)}{a}$$
$$= f(x) + b - \left(\frac{bx}{a} + b\right)$$
$$= f(x) - \frac{bx}{a} = \phi(x).$$

Logo, ϕ é uma função periódica.

 $^{^2 {\}rm Confira}$ a $2^{\rm a}$ seção da aula $\it Vetores~no~Plano$ - $\it Parte~II.$

Pelo exemplo 1, ϕ é limitada, digamos, $|\phi| \leq M$, para uma certa constante positiva M. Assim,

$$-M \le f(x) - \frac{bx}{a} \le M,$$

implicando, para x > 0,

$$-\frac{M}{x} + \frac{b}{a} \le \frac{f(x)}{x} \le \frac{M}{x} + \frac{b}{a}.$$

Como

$$\lim_{x \to +\infty} \left(-\frac{M}{x} + \frac{b}{a} \right) = \frac{b}{a} = \lim_{x \to +\infty} \left(\frac{M}{x} + \frac{b}{a} \right),$$

o teorema do confronto garante que $\lim_{x\to +\infty}\frac{f(x)}{x}$ existe e

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{b}{a}.$$

Nosso próximo resultado é, de certo modo, uma generalização do exemplo 1.

Exemplo 3. Sejam $g,h:[0,+\infty)\to\mathbb{R}$ funções contínuas. Se h(x)>x para todo $x\geq 0$ (logo, $\mathrm{Im}(h)\subset (0,+\infty)$) e $(g\circ h)(x)\leq g(x)$ para todo $x\geq 0$, prove que g é limitada superiormente.

Solução. Já observamos que

$$x < h(x), \quad \forall x \in [0, +\infty),$$
 (1)

bem como

$$g(h(x)) \le g(x) \tag{2}$$

para cada número real não negativo x.

Também, a desigualdade (1) implica h(x) > 0 para todo $x \ge 0$. Em particular, podemos substituir x por h(0) em (1) para obter h(0) < h(h(0)). Mais geralmente, observando que

http://matematica.obmep.org.br/matematica@obmep.org.br

П

 $h^{(n)}(0)>0$ para todo natural n,uma repetição do argumento anterior permite obter a desigualdade

$$h^{(n)}(0) < h^{(n+1)}(0)$$

para cada n natural, de forma que $(h^{(n)}(0))_{n\geq 1}$ é uma sequência crescente. Portanto, ela possui limite, digamos, L.

Afirmamos que $L=+\infty$. Caso contrário, L seria um número real positivo, de sorte que, pela continuidade de h,

$$h(L) = h\left(\lim_{n \to \infty} h^{(n)}(0)\right) = \lim_{n \to \infty} h(h^{(n)}(0))$$

= $\lim_{n \to \infty} h^{(n+1)}(0) = L.$

Todavia, a igualdade acima contradiz a relação (1).

Se M for o valor máximo de g restrita ao intervalo [0, h(0)], afirmamos que $g(x) \leq M$ para todo $x \geq 0$. A demonstração dessa afirmação encerrará a solução.

De fato, como $\lim_{n\to\infty} h^{(n)}(0) = +\infty$, os intervalos justapostos

$$[0, h(0)), [h(0), h^{(2)}(0)), \dots, [h^{(n)}(0), h^{(n+1)}(0)), \dots$$

decompõem a semirreta $[0, +\infty)$, de sorte que um dado número real $x \ge 0$ pertence a exatamente um desses intervalos, digamos, $[h^{(m)}(0), h^{(m+1)}(0))$.

Observando que a imagem do intervalo [0, h(0)) por $h^{(m)}$ contém o intervalo $[h^{(m)}(0), h^{(m+1)}(0))$, existe $x_0 \in [0, h(0))$ tal que $h^{(m)}(x_0) = x$. Assim, de acordo com a desigualdade (2), vem que

$$g(x) = g(h^{(m)}(x_0)) \le g(h^{(m-1)}(x_0))$$

 $\le \dots \le g(h(x_0)) \le g(x_0) \le M.$

Para o próximo exemplo, precisaremos da seguinte desigualdade:

$$ln a < a - 1,$$
(3)

http://matematica.obmep.org.br/matematica@obmep.org.br

P.4

válida para todo real a>0. Isso pode ser justificado geometricamente; confira o exemplo 11 da última aula do módulo $Função\ Logarítmica$. Alternativamente, consulte o exemplo 12 da aula Propriedades - $Parte\ I$, no módulo $Derivada\ como\ Função$.

Substituindo a por e^x em (3), segue que

$$e^x \ge x + 1,\tag{4}$$

de modo que

$$e^x > x \text{ para cada } x \in \mathbb{R}.$$
 (5)

Exemplo 4 (OBMU/2007, 2^a fase, Prob. 4). Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que $f(f(x)) = e^x$ para todo $x \in \mathbb{R}$. Prove que, para todo n inteiro positivo,

$$\lim_{x \to +\infty} \frac{f(x)}{x^n} = +\infty.$$

Solução. A demonstração será desenvolvida ao longo de seis afirmações.

Afirmação 1. f e exp comutam, ou seja, $f \circ \exp = \exp \circ f$.

Basta utilizar a associatividade da operação de composição de funções:

$$f \circ \exp = f \circ (f \circ f) = (f \circ f) \circ f = \exp \circ f.$$

Afirmação 2. Se $x = e^u$, então

$$\frac{f(x)}{r} = e^{f(u) - u}.$$

Segue por um cálculo direto, utilizando a Afirmação 1:

$$\frac{f(x)}{x} = \frac{f(e^u)}{e^u} = \frac{e^{f(u)}}{e^u} = e^{f(u)-u}.$$

Afirmação 3. f(x) > x, para todo $x \in \mathbb{R}$.

Com efeito, começamos notando que f não possui pontos fixos. Realmente, se tivéssemos f(x) = x para algum real x, valeria

$$e^x = f(f(x)) = f(x) = x,$$

em contradição com (5).

Pelo exemplo 3 da aula anterior, devemos ter f(x) < x ou f(x) > x, para todo $x \in \mathbb{R}$. Se ocorresse o 1º caso, obteríamos, substituindo u por f(x) na designaldade $f(u) < u, u \in \mathbb{R}$,

$$e^x = f(f(x)) < f(x) < x,$$

o que mais uma vez contradiz (5).

Afirmação 4. A função $g:[0,+\infty) \to (0,+\infty),$ definida por $g(x) = \frac{1}{f(x)-x},$

$$g(x) = \frac{1}{f(x) - x},$$

é limitada superiormente.

Estabeleçamos inicialmente que $(g \circ \exp)(x) \leq g(x)$ para todo $x \in [0, +\infty)$. Uma vez feito isso, a afirmação seguirá do exemplo anterior, com $h = \exp$.

Para o que falta, utilizando a desigualdade (4), com f(x) – \boldsymbol{x} no lugar de \boldsymbol{x} , a conclusão deve seguir da relação

$$g(x) = \frac{1}{x} \cdot \frac{1}{\frac{f(x)}{x} - 1}.$$

De fato, com a Afirmação 2 em mente, temos, para $x \ge 0$,

$$g(e^x) = \frac{1}{e^x} \cdot \frac{1}{e^{f(x)-x} - 1}$$

 $\leq \frac{1}{f(x) - x} = g(x),$

Afirmação 5.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty.$$

De acordo com a afirmação anterior, existe uma constante positiva K tal que $1/(f(x)-x) \le 1/K$ para todo $x \ge 0$, ou seja,

$$f(x) - x > K \tag{6}$$

para todo $x \ge 0$.

Daí, segue que $\frac{f(x)}{x} \ge e^K$ para cada $x \ge 1$. Realmente, se $x \ge 1$, podemos escrever $x = e^u$ para algum $u \ge 0$. Logo, por (6) e pela segunda afirmação, temos

$$\frac{f(x)}{x} = e^{f(u)-u} \ge e^K.$$

Portanto, como

$$f(x) - x = x \cdot \left[\frac{f(x)}{x} - 1\right] \ge x \cdot (e^K - 1)$$

se $x \ge 1$, com $e^K - 1 > 0$, segue a igualdade

$$\lim_{x \to +\infty} [f(x) - x] = +\infty.$$

Desse modo, com a mudança de variável $x=e^u$, o limite anterior e a segunda afirmação implicam

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{u \to +\infty} e^{f(u)-u} = +\infty,$$

conforme desejado.

Afirmação 6. Para n natural, tem-se

$$\lim_{x \to +\infty} \frac{f(x)}{x^n} = +\infty.$$

Utilizaremos, mais uma vez, a mudança de variável $x = e^u$:

$$\lim_{x \to +\infty} \frac{f(x)}{x^n} = \lim_{u \to +\infty} \frac{f(e^u)}{e^{nu}}$$

$$= \lim_{u \to +\infty} e^{f(u) - nu}$$

$$= \lim_{u \to +\infty} e^{u \cdot \left(\frac{f(u)}{u} - n\right)} = +\infty,$$

pois, quando $u \to +\infty$, a Afirmação 5 garante que

$$u \cdot \left(\frac{f(u)}{u} - n\right) \to +\infty \cdot (+\infty - n) = +\infty.$$

http://matematica.obmep.org.br/matematica@obmep.org.br

P.7

П

Solução'. Começaremos com duas observações, sendo a primeira delas a Afirmação 1 da demonstração anterior.

- (1) f comuta com a exponencial, ou seja, $f \circ \exp = \exp \circ f$.
- (2) f é injetiva, pois

$$f(x) = f(y) \Rightarrow f(f(x)) = f(f(y))$$

 $\Rightarrow e^x = e^y \Rightarrow x = y,$

uma vez que exp é injetiva.

A última observação, aliada à continuidade de f, garante, via exemplo 15 da aula anterior, a monotonicidade estrita dessa função. Mais precisamente, f é crescente, pois, caso contrário, f seria decrescente e a desigualdade (5) implicaria

$$e^{f(x)} = f(e^x) < f(x),$$

contradizendo (5).

Agora, seja $g:(0,+\infty)\to\mathbb{R}$ a função contínua definida por $g(x)=\frac{f(x)}{x}$. Para concluir a solução, só precisamos mostrar que

$$\lim_{x \to +\infty} g(x) = +\infty. \tag{7}$$

Realmente, com a relação (7) estabelecida, obtemos, para cada natural n, a igualdade

$$\lim_{x \to +\infty} (f(x) - nx) = \lim_{x \to +\infty} x(g(x) - n)$$
$$= +\infty \cdot (+\infty - n) = +\infty.$$

Daí, com a mudança de variável $x = e^u$, vem que

$$\lim_{x \to +\infty} \frac{f(x)}{x^n} = \lim_{u \to +\infty} \frac{f(e^u)}{(e^u)^n}$$

$$= \lim_{u \to +\infty} \frac{e^{f(u)}}{e^{nu}}$$

$$= \lim_{u \to +\infty} e^{f(u)-nu} = +\infty,$$

pois $e^z \to +\infty$ quando $z \to +\infty$, e $z = f(u) - nu \to +\infty$ quando $u \to +\infty$.

Para provar (7), começamos por notar que f(x) > x para todo $x \in \mathbb{R}$. Com efeito, se fosse $f(x) \leq x$ para algum x real, o fato de f ser crescente implicaria

$$e^x = f(f(x)) \le f(x) \le x,$$

contradizendo (5). Portanto, g > 1 e

$$K := \min_{2 \le u \le e^2} g(u)$$

é um número maior que 1, sendo a existência de K garantida pelo teorema dos valores extremos.

Agora, vejamos como uma estimativa do tipo $g \ge K$, sobre o intervalo $I = [2, e^2]$, permite uma estimativa "melhorada" sobre o intervalo $J = [e^2, e^{e^2}]$ (note que J é a imagem de I pela exponencial). De fato, se $x = e^u \in J$, $u \in I$, temos

$$\begin{split} g(x) &= g(e^u) = \frac{f(e^u)}{e^u} = \frac{e^{f(u)}}{e^u} \\ &= e^{f(u)-u} = (e^{g(u)-1})^u \\ &\geq (e^{K-1})^u \geq K^u \geq K^2, \end{split}$$

em que, nas duas últimas desigualdades, utilizamos (4) e o fato de que $K>1,\,u\geq 2.$

Dessa forma, definindo indutivamente a sequência de intervalos justapostos $(I_n)_{n\geq 0}$ por

$$I_0 = [2, e^2], I_{n+1} = \exp(I_n),$$

a reunião dos intervalos I_n , com $n \geq m$, é a semirreta $[a_m, +\infty)$, sendo a_m o extremo inferior do intervalo I_m .

Além disso, o cálculo anterior permite estabelecer, por um simples argumento indutivo, a desigualdade

$$g(x) \ge K^{2^n},$$

para cada $x \in I_n$.

Então, observando que a sequência (K^{2^n}) é crescente e tem limite $+\infty$, pois K > 1, dado um real M > 0, vale $M < K^{2^{n_0}}$ para um certo natural n_0 . Logo, $x > a_{n_0} \Rightarrow x \in I_n$, para algum $n \ge n_0$, de sorte que

$$x > a_{n_0} \Rightarrow g(x) \ge K^{2^n} \ge K^{2^{n_0}} > M,$$

o que, pela definição de limite, estabelece (7) e encerra a solução.

O resultado que segue é conhecido na literatura como $lema\ do\ sol\ nascente\ ^3.$

Exemplo 5 (IMC - 2011, Problema 1, 1º dia). Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. $x \in \mathbb{R}$ é chamado ponto de sombra se existe y > x tal que f(y) > f(x). Sejam a < b números reais e suponha que

- Cada ponto do intervalo (a,b) é um ponto de sombra.
- a e b não são pontos de sombra.

Prove que

- (a) $f(x) \le f(b)$ para todo a < x < b;
- (b) f(a) = f(b).

 ${\bf Solução.}$ Por definição, como a,bnão são pontos de sombra, seguem as implicações

$$x > a \Rightarrow f(x) \le f(a) \tag{8}$$

е

$$y > b \Rightarrow f(y) \le f(b).$$
 (9)

Em particular, $f(b) \leq f(a)$ por (8).

Fixado $x \in (a, b)$, seja x_0 um ponto de máximo da restrição $f|_{[x,b]}$. Afirmamos que $x_0 = b$ (em particular, b é ponto de máximo estrito de $f|_{[x,b]}$). Com efeito, se tivéssemos

³Confira o exercício 20 no capítulo 8 da referência [3].

 $x_0 \in [x,b)$, então x_0 seria ponto de sombra, isto é, existiria $y > x_0$ tal que $f(y) > f(x_0)$. Como $f(b) \le f(x_0)$, se fosse y > b, a implicação (9) permitiria escrever $f(y) \le f(x_0)$, o que não é possível. Assim, devemos ter $y \in (x_0,b] \subset [x,b]$ e, daí, segue a relação $f(y) \le f(x_0)$, pois x_0 é ponto de máximo de $f|_{[x,b]}$. Essa contradição garante que $x_0 = b$ é a única possibilidade.

O argumento no parágrafo anterior estabeleceu o seguinte fato: f(x) < f(b) para todo $x \in (a,b)$. Isso demonstra a versão estrita da desigualdade no item (a). Para estabelecer o item (b), fazemos $x \to a^+$ na relação f(x) < f(b), obtendo $f(a) \le f(b)$, o que, juntamente a desigualdade $f(b) \le f(a)$ obtida acima, permite a igualdade f(a) = f(b).

Nosso último exemplo se mostrará útil quando tratarmos, em um módulo futuro, da regra de l'Hôspital.

Exemplo 6. Sejam I um intervalo ilimitado superiormente e $f,g:I\to\mathbb{R}$ funções contínuas tais que

1.
$$\lim_{x \to +\infty} \frac{f(x+1) - f(x)}{g(x+1) - g(x)} = L, -\infty \le L \le +\infty;$$

2. $g \notin crescente \ e \lim_{x \to +\infty} g(x) = +\infty.$

Prove que

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L. \tag{10}$$

Solução. Não há perda de generalidade em supor g(x) > 0 para cada $x \in I$.

O texto que segue estabelece a fórmula (10) quando L é um número real, enquanto os casos $L=\pm\infty$ seguem de simples adaptações nos argumentos.

Dado $\varepsilon > 0$, seja $A \in I$ um número real tal que

$$x \ge A \Rightarrow \left| \frac{f(x+1) - f(x)}{g(x+1) - g(x)} - L \right| < \frac{\varepsilon}{2},$$

ou seja, $x \ge A$ implica

$$(g(x+1) - g(x))(L - \varepsilon/2) < f(x+1) - f(x)$$

е

$$f(x+1) - f(x) < (g(x+1) - g(x))(L + \varepsilon/2).$$

Se, agora, $x \ge A + 1$, escreva $x = x_0 + n$, em que n é um número natural e $x_0 \in [A, A+1)^4$. Daí, somando as n desigualdades

$$(g(x_0+k)-g(x_0+(k-1)))(L-\varepsilon/2) < f(x_0+k)-f(x_0+(k-1)),$$

para $k=1,2,\ldots,n,$ obtemos

ra
$$k = 1, 2, \dots, n$$
, obtemos
$$(g(x_0 + n) - g(x_0))(L - \varepsilon/2) < f(x_0 + n) - f(x_0). \tag{11}$$
nalogamente, vale
$$f(x_0 + n) = f(x_0) < (g(x_0 + n) - g(x_0))(L + \varepsilon/2) \tag{12}$$

Analogamente, vale

$$f(x_0 + n) - f(x_0) < (g(x_0 + n) - g(x_0))(L + \varepsilon/2).$$
 (12)

As desigualdades (11) e (12) se resumem a

$$L - \varepsilon/2 < \frac{f(x_0 + n) - f(x_0)}{g(x_0 + n) - g(x_0)} < L + \varepsilon/2,$$

ou melhor,

$$\left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} - L \right| < \varepsilon/2.$$

Observando que f(x)/g(x) - L se escreve como

$$\frac{g(x) - g(x_0)}{g(x)} \left(\frac{f(x) - f(x_0)}{g(x) - g(x_0)} - L \right) + \frac{f(x_0) - g(x_0) \cdot L}{g(x)},$$

vemos que, se $x \ge A + 1$.

$$\left| \frac{f(x)}{g(x)} - L \right| \le \frac{g(x) - g(x_0)}{g(x)} \cdot \frac{\varepsilon}{2} + \left| \frac{f(x_0) - g(x_0) \cdot L}{g(x)} \right|$$

$$< \frac{\varepsilon}{2} + \left| \frac{f(x_0) - g(x_0) \cdot L}{g(x)} \right|.$$

 $^{^{4}}n = |x - A| e x_{0} = x - n.$

Como $x_0 \in [A, A+1)$ e f, g são limitadas nesse intervalo (por que? 5), o teorema do anulamento garante que a expressão

$$\left| \frac{f(x_0) - g(x_0) \cdot L}{g(x)} \right| = \frac{1}{g(x)} \cdot |f(x_0) - g(x_0) \cdot L|$$

tende a 0 quando $x\to +\infty$, já que $1/g(x)\to 0$ se $x\to +\infty$. Dessa forma, existe $B\geq A+1$ satisfazendo

$$x \ge B \Rightarrow \left| \frac{f(x_0) - g(x_0) \cdot L}{g(x)} \right| < \frac{\varepsilon}{2}.$$

Assim,

$$x \ge B \Rightarrow \left| \frac{f(x)}{g(x)} - L \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

como desejado.

Dicas para o Professor

Outros exemplos envolvendo aplicações interessantes do teorema dos valores extremos podem ser encontrados nas referências listadas adiante. Três sessões de 50min devem ser suficientes para expor o conteúdo deste material.

Sugestões de Leitura Complementar

- A. Caminha. Fundamentos de Cálculo, 2ª ed. Rio de Janeiro: SBM, Rio de Janeiro, 2022.
- R. Gelca e T. Andreescu. Putnam and Beyond, 2^a ed. Springer Nature, Cham, 2017.
- 3. M. Spivak. Calculus. 4^{a} ed. Houston: Publish or Perish, 2008.

 $^{^5 \}mathrm{Note}$ que f,gsão limitadas no intervalo [A,A+1] pelo teorema de Weierstrass.