Material Teórico - Módulo de Função Logarítmica

Função logarítmica e propriedades - Parte 1

Primeiro Ano - Ensino Médio

Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

1 Motivação para o estudo dos logaritmos

No módulo sobre funções exponenciais, estudamos equações exponenciais que podem ser reduzidas a uma igualdade entre potências de mesma base, do tipo

$$a^{f(x)} = a^{g(x)}.$$

onde $a \in \mathbb{R}$, a > 0 e $a \neq 1$. Essa igualdade implica uma igualdade entre os expoentes,

$$f(x) = g(x),$$

que, em geral, nos permite resolver a equação. No caso em que a igualdade é substituída por uma desigualdade, temos inequações exponenciais, que também foram estudadas no módulo anterior.

No final da aula sobre inequações exponenciais examinamos, no exemplos 10 e 11, as inequações

$$2^{x^2+1} > 3^x$$

е

$$3^{x+1} < 5^{x-1},$$

respectivamente (nesta última, procurávamos a menor solução inteira).

Dados A,B>0, para resolvermos uma inequação do tipo

$$A^{f(x)} < B^{g(x)}.$$

(ou outra inequação similar, onde "<" pode ser substituído por "<", " \leq " ou " \geq ") usamos o fato de que a imagem da função exponencial $u\mapsto A^u$ é o conjunto dos reais positivos. Esse fato garante que existe um número real k tal que $A^k=B$, o que nos permite reescrever a desigualdade acima como

$$A^{f(x)} < A^{kg(x)}.$$

Por sua vez, essa última inequação envolvendo potências de *mesma* base e, como tal, equivale à desigualdade entre os exponentes

$$f(x) < kg(x).$$

No caso dos exemplos 10 e 11 da aula sobre inequações exponenciais, por se tratarem de desigualdades, pudemos resolvê-las usando *estimativas* para o valor de k. No entanto, se quisermos resolver uma equação exponencial que envolva potências de bases diferentes, será necessário saber o valor *exato* de k, como no Exemplo 1 a seguir.

Exemplo 1. Resolva a equação

$$2^x = 3. (1)$$

Como acima, o fato de que a imagem da função exponencial $y = 2^x$ é o conjunto dos reais positivos garante que existe um real k tal que $2^k = 3$, ou seja, tal que a

equação (1) tem solução. Como a função $y=2^x$ também é injetiva¹, essa solução é única. Uma estimativa um tanto grosseira para k pode ser obtida considerando-se as desigualdades 2 < 3 < 4, isto é, $2^1 < 2^k < 2^2$, o que implica que 1 < k < 2.

2 Definição e propriedades básicas

Logaritmos são expoentes. Mais precisamente, se a > 0, $a \neq 1$ e b > 0, o **logaritmo** de b na base a é o expoente y que devemos colocar na potência de base a para que o resultado seja b, ou seja, é a solução da equação exponencial

$$a^y = b. (2)$$

Mais uma vez, a consistência dessa definição segue do fato de que a imagem da função exponencial $y\mapsto a^y$ é o conjunto dos reais positivos.

Usamos a notação

$$y = \log_a b. (3)$$

(lê-se logaritmo de b na base a) para denotar a solução de (2). Por exemplo, a equação do Exemplo 1, $2^x = 3$, tem por solução o logaritmo de 3 na base 2, isto é, $\log_2 3$.

Evidentemente, a discussão até aqui apenas dá um nome a um número real que sabemos existir, mas que não sabemos estimar com precisão. Por exemplo, até o momento não temos a menor ideia sobre como calcular $\log_2 3$ com, digamos, duas casas decimais corretas. Esse fato será remediado à medida que prosseguirmos em nosso estudo. Por ora, deduzamos algumas propriedades de logaritmos, as quais decorrem das regras usuais de exponenciação.

Suponha que a é um número real positivo e diferente de 1, e b e c são números reals positivos. Temos as seguintes propriedades:

$$(1) \qquad \log_a 1 = 0$$

De fato, se $\log_a 1 = y$, então $a^y = 1$, ou seja, $a^y = a^0$. Como sabemos, isso implica y = 0.

$$(2) \qquad \log_a a = 1$$

Se $\log_a a = y$, então $a^y = a$, ou seja, $a^y = a^1$, o que implica y = 1.

$$(3) \qquad a^{\log_a b} = b$$

Neste caso, a própria definição de logaritmo já fornece a propriedade, pois, $\log_a b$ é o exponente que temos de dar à base a para obter b como resultado.

 $^{^1{\}rm Tais}$ propriedades das funções exponenciais foram estabelecidas na aula Função exponencial e propriedades, no módulo sobre Funções Exponenciais.

$$(4) \mid \log_a(bc) = \log_a b + \log_a c$$

Escreva $\log_a b = x$ e $\log_a c = y$. Então $a^x = b$ e $a^y = c$, logo $bc = a^x a^y = a^{x+y}$. Mas, se $a^{x+y} = bc$, então, por definição, temos $x + y = \log_a(bc)$. Assim,

$$\log_a(bc) = x + y = \log_a b + \log_a c.$$

(5)
$$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c$$
 Essa propriedade decorre de (4), aplicada a $\frac{b}{c}$ no lugar de b :

$$\log_a b = \log_a \left(\left(\frac{b}{c} \right) c \right) = \log_a \left(\frac{b}{c} \right) + \log_a c;$$

portanto,
$$\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$$
.

(6)
$$\log_a \left(b^k \right) = k \cdot \log_a b$$

Se $x = \log_a b$ e $y = \log_a(b^k)$, então $b = a^x$ e $b^k = a^y$. Assim, $a^y = b^k = (a^x)^k = a^{kx}$ e, daí, y = kx. Mas isso é exatamente o que queríamos demonstrar.

A propriedade (4) tem uma importância especial, pois foi o impulso motivador para o estudo dos logaritmos, no início do século XVII. Como logaritmos transformam produtos em somas, eles se tornaram ferramentas úteis para cálculos aritméticos com números muito grandes, numa época em que não existiam calculadoras. Vamos ilustrar como isso pode ser feito no Exemplo 3 a seguir.

Até meados do século XX, era comum que os livros trouxessem *tábuas de logaritmos*, que nada mais são do que tabelas nas quais podemos consultar os valores aproximados de vários logaritmos de números (numa certa base).

As tabelas mais comuns exibiam logaritmos na base 10, ditos logaritmos decimais, de números em um determinado intervalo. Então, utilizando tais valores em conjunção com as propriedades (4) e (6), calculava-se outros logaritmos. Ilustremos esse procedimento no seguinte

Exemplo 2. Suponha que saibamos (consultando uma tábua de logaritmos decimais) que

$$\log_{10}(2,02) = 0,3051,$$

com quatro casas decimais exatas. Para calcular o valor de $\log_{10}(2020)$, começamos escrevendo $2020 = 2,02 \cdot 10^3$. Então, as propriedades (4) e (6) dão

$$\begin{aligned} \log_{10}(2020) &= \log_{10}(2, 02 \cdot 10^3) \\ &= \log_{10}(2, 02) + \log_{10}(10^3) \\ &= \log_{10}(2, 02) + 3 \cdot \log_{10}(10) \\ &= \log_{10}(2, 02) + 3 \\ &= 3,3051. \end{aligned}$$

56000 (S = -54 T = +.107) L 748										
	0	1	2	3	4	5	6	7.	8	9
5600	748 188	196	204	211	219	227	235	242	250	258
5601	. 266	273	281	289	297	304	312	320	328	335
5602	343	351	359	366	374	382	390	397	405	413
5603	421	428	436	444	452	459	467	475	483	490
5604	498	506	514	521	529	537	545	552	560	5.68
5605	576	583	591	599	607	614	622	630	638	645
5606	653	661	669	676	684	692	700	707	715	723
5607	731	738	746	754	762	769	777	785	793 870	800 878
5608	808	816	823	831	839	847	854	862 940	947	955
5609	885	893	901	909	916	924	932			
5610	963	971	978	986	994	* 002	*009	* 017 094	*025 102	*033
5611	749 040	048	056	063	071	079 156	087 164	172	180	110 187
5612	118	125	133	.141	149		241	249	257	265
5613	195	203	211	218	226	234		327	334	342
5614	272	280	288	296	303	311	319			
5615	350	357	365	373	381	388	396	404	412	419
5616	427	435	443	450	458		473	481	489	497
5617	504	512	520	528	535		551	559	566	574
5618	582	. 589	597	605	613	620	628	636	644 721	651 729
5619	659	667	674	682	690	698	705	713		
5620	736	744	752	759	767	775	783	790	798	806
5621	814	821	829	837	844	852	860	868	875	883
5622	891	899	906	914	922	929	937	945	953	960
5623	968	976	984	991	999	*007	*014	*022	*030	*038
5624	750 045	053	061	068	076	084	092	099	107	115
5625	123	130	138	146	153	161	169	177	184	192
5626	200		215	223	231	238	246		261	269
5627	277	285	292	300	308	316	323	331	339	346
5628	354	362	370	377	385	393	400	408	416	424
5629	431	439	447	454	462	470	478	485	493	501
5630	508	516		532	539	547	555	562	570	578
5631	586	593								655 732
5632	663			686			709		724	
5633	740		755	763	771	778			801	809
5634	817	825		-840		1			879	
5635			909			932			956	
5636						*010			*033	
5637				071	079		094		110	117
5638					156	164			187	194
5639	202	210	217	225	233	241	248	256	264	271
1		1				11				

Figura 1: uma tábua de logaritmos, retirada do livro "Astronomische Nachrichten", de Heinrich Christian Schumacher (1780–1850).

Conforme prometido anteriormente, o próximo exemplo mostra como tábuas de logaritmos eram utilizadas para calcular produtos de números grandes.

Exemplo 3. Para calcular o produto 1999 · 2019 com o auxlio de uma tábua de logaritmos decimais, começamos escrevendo

$$\log_{10}(1999 \cdot 2019) = \log_{10}(1999) + \log_{10}(2019).$$

Em seguida, consultando uma tabela de logaritmos decimais, obtemos

$$\log_{10}(1999) = 3,3008 \ e \ \log_{10}(2019) = 3,3051,$$

ambos com quatro casas decimais corretas. Assim,

$$\log_{10}(1999 \cdot 2019) = 3,3008 + 3,3051 = 6,6059.$$

Consultando a mesma tabela, veríamos que o número inteiro cujo logaritmo decimal mais se aproximaria de 6,6059 seria 4.035.981, o que forneceria

$$1999 \cdot 2019 = 4.035.981.$$

Nos dias de hoje, a lição que fica, dos cálculos dos exemplos anteriores é que logaritmos servem para transformar uma multiplicação em uma adição, que é uma operação que

exige um esforço computacional menor. As calculadoras científicas e os computadores utilizam-se dessa propriedade de forma indireta, de uma maneira bem mais sofisticada, para realizar rapidamente cálculos muito complicados.

O próximo exemplo exercita a definição de logaritmo.

Exemplo 4. Mostre que, se a e b são números reais positivos, com $a \neq 1$, então

$$\log_{a^k} b = \frac{1}{k} \cdot \log_a b,$$

para todo número real não nulo k.

Solução. Escreva $\log_a b = x$ e $\log_{a^k} b = y$. Pela definição de logaritmo, temos $a^x = b$ e $(a^k)^y = b$. Logo, $a^x = (a^k)^y$, ou seja, $a^x = a^{ky}$. Igualando os expoentes, obtemos $y = \frac{1}{k} \cdot x$, que é a igualdade que procurávamos.

Outra propriedade notável dos logaritmos é a mudança de base. Se a, b e c são números reais positivos, e a e c são diferentes de 1, então

$$\log_a b = \frac{\log_c b}{\log_c a}.$$

Para demonstrarmos a validade da expressão acima, escrevemos $x = \log_a b$, $y = \log_c b$ e $z = \log_c a$. Pela definição de logaritmo, temos $a^x = b$, $c^y = b$ e $c^z = a$. Por sua vez, as duas primeiras igualdades implicam $a^x = c^y$. Mas, como $a = c^z$, podemos escrever

$$(c^z)^x = a^x = c^y,$$

ou, o que é o mesmo, $c^{xz}=c^y$. Assim, zx=y e, daí $x=\frac{y}{z}$, que é a igualdade procurada.

Terminamos esta seção com duas observações importantes.

Observação 5. Em geral, quão complicado é o número $\log_a b$ (para a,b>0, com $a\neq 1$)? Evidentemente, esse número pode ser racional, ou mesmo inteiro, como por exemplo em $\log_2 8=3$, $\log_3 \sqrt{3}=\frac{1}{2}$ (verifique essas igualdades). Entretanto, pode ser mostrado (mas isso está bem além do que podemos fazer aqui) que, se a e b são inteiros positivos primos entre si, então $\log_a b$ é um número irracional.

Observação 6. Na aula Função Exponencial e Propriedades, Observação 8, apresentamos o importante número

$$e \cong 2,718281828459045.$$

Por razões que ficarão claras à medida que prosseguirmos nosso estudo, logaritmos na base e são chamados **logaritmos naturais**, sendo denotados por ln ou log. Assim, para x > 0, temos

$$\ln x = \log x = \log_e x.$$

3 Funções logarítmicas e seus gráficos

Vamos denotar por \mathbb{R}_+^* o conjunto dos números reais positivos. Fixado um número real positivo a > 0, diferente de 1, função $L_a : \mathbb{R}_+^* \to \mathbb{R}$, dada por $L_a(x) = \log_a x$, é chamada função logarítmica de base a.

Se a>1, a função L_a é crescente. De fato, suponha que x_1 e x_2 sejam números reais positivos, e sejam $y_1=\log_a x_1$ e $y_2=\log_a x_2$. Suponha, ainda, que $x_1< x_2$. A definição de logaritmo nos diz que $x_1=a^{y_1}$ e $x_2=a^{y_2}$. Como a>1, a função exponencial de base a é crescente, logo, se ocorresse $y_1\geq y_2$, teríamos $a^{y_1}\geq a^{y_2}$, o que não é o caso. Assim, deve ser $y_1< y_2$, ou seja, $\log_a x_1<\log_a x_2$.

Se 0 < a < 1, então a função L_a é decrescente. De fato, se $b = a^{-1}$, então b > 1, de sorte que a função L_b , dada por $L_b(x) = \log_b x$, é crescente, pelo que vimos no parágrafo anterior. Por outro lado, aplicando a fórmula do Exemplo 4 com k = -1, obtemos

$$L_a(x) = \log_a x = \log_{b^{-1}} x = (-1)\log_b x = -L_b(x).$$

Assim, como L_b é crescente, a função L_a é decrescente. Mostremos, agora, o seguinte fato importante.

A função exponencial
$$E_a : \mathbb{R} \to \mathbb{R}_+^*$$
 é bijetiva e a função L_a é sua inversa.

Na aula sobre funções exponenciais, vimos que a função exponencial E_a é injetiva e que sua imagem é o conjunto \mathbb{R}_+^* dos números reais positivos. Isso implica que $E_a: \mathbb{R} \to \mathbb{R}_+^*$ é bijetiva. Evidentemente, se mostrarmos que E_a tem uma inversa, isso será outra forma de mostrar que essa função é bijetiva. Fazemos isto a seguir.

Pela definição de logaritmo (veja a propriedade (3)), temos

$$E_a(L_a(x)) = E_a(\log_a x) = a^{\log_a x} = x.$$

Por outro lado, segue das propriedades (2) e (6) que

$$L_a(E_a(x)) = \log_a(a^x) = x \log_a a = x.$$

Isso mostra que as composições $E_a \circ L_a$ e $L_a \circ E_a$ são as funções identidade de \mathbb{R}_+^* e \mathbb{R} , respectivamente. Assim, E_a e L_a são inversas uma da outra.

Seja a > 1 um número real dado. Na Figura 2 vemos o gráfico da função exponencial $E_a(x) = a^x$ em verde e da função logarítmica $L_a(x) = \log_a x$ em vermelho (de fato, modificando o real a > 1, modificaremos correspondentemente os gráficos de E_a e L_a . Assim, a Figura 2 deve ser vista como uma representação típica de tais gráficos).

Uma vez que são gráficos de funções inversas, eles são curvas simétricas em relação à reta y=x, bissetriz dos quadrantes ímpares. Isso significa que, para cada ponto do gráfico da função exponencial, existe um ponto sobre o gráfico da função logarítmica tal que o segmento de reta com extremidades nesses dois pontos é perpendicular à reta y=x, intersectando tal reta em seu ponto médio.

3

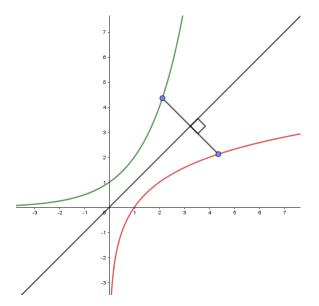


Figura 2: os gráficos da função exponencial $x \mapsto a^x$ (em verde) e de sua inversa, $x \mapsto \log_a x$ (em vermelho).

Em particular, à medida que x se aproxima de 0 por valores positivos, o gráfico da função logarítmica se aproxima mais e mais do eixo y; mais precisamente, dado um número real N<0, existe x>0 suficientemente próximo de zero, tal que $\log_a x < N$. Por outro lado, dado M>0, existe x>0, suficientemente grande tal que $\log_a x>M$; de outra forma, podemos tornar $\log_a x$ tão grande quanto desejado, bastando tomar um real positivo x suficientemente grande.

No caso em que 0 < a < 1, os gráficos da função exponencial $E_a(x) = a^x$ e da função logarítmica $L_a(x) = \log_a x$ também são simétricos em relação à reta y = x, uma vez que tais funções continuam sendo inversas uma da outra. Tais gráficos são como os mostrados na Figura 3 (novamente aqui, modificando o real 0 < a < 1, modificaremos correspondentemente os gráficos de E_a e L_a . Assim, a Figura 3 também deve ser vista como uma representação tipica de tais gráficos).

A diferença entre os gráficos esboçados nas duas figuras pode ser explicada facilmente, a partir da fórmula deduzida no Exemplo 4: se $\alpha > 1$, então $0 < \alpha^{-1} < 1$ e

$$L_{\alpha^{-1}}(x) = \log_{\alpha^{-1}} x = -\log_{\alpha} x = -L_{\alpha}(x)$$

ou, resumidamente,

$$L_{\alpha^{-1}} = -L_{\alpha}$$
.

Assim, os gráficos das funções L_{α} e $L_{\alpha^{-1}}$ são simétricos em relação ao eixo y.

A análise que fizemos da relação entre os gráficos da função exponencial e logarítmica, no caso a > 1, pode ser repetida no caso em que 0 < a < 1. Nesse caso, as

conclusões sobre o comportamento da função logarítmica $x\mapsto \log_a x$ quando x se aproxima de zero (por valores positivos) ou quando x fica arbitrariamente grande são as seguintes: dado M>0, existe x>0 suficientemente pequeno, tal que $\log_a x>M$; dado N<0, existe x suficientemente grande tal que $\log_a x< N$. Para compreender o significado dessas afirmações, basta usar que $a^{-1}>1$ e que (conforme observamos acima) os gráficos de L_a e $L_{a^{-1}}$ são simétricos em relação ao eixo y.

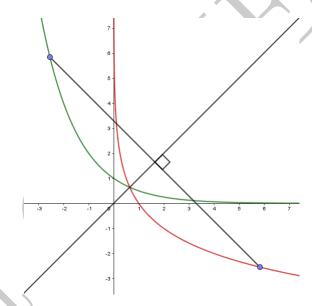


Figura 3: os gráficos da função exponencial $x\mapsto a^x$ (verde) e de sua inversa $x\mapsto \log_a x$ (vermelho), no caso em que 0< a<1.

Dicas para o Professor

A presente aula pode ser coberta em três encontros de 50 minutos.

É fortemente aconselhável que o professor trabalhe os dois últimos exemplos da aula sobre inequações exponenciais antes de começar esta aula. Conforme lembramos no início desta aula, tais exemplos são motivadores para o estudo dos logaritmos.

Os usos de tábuas de logaritmos e logaritmos decimais para a realização de cálculos são temas que caíram definitivamente em desuso depois do surgimento e popularização das calculadoras eletrônicas. Não advogamos aqui em defesa desse método anacrônico, e o citamos no texto somente por razões históricas, como uma ilustração do papel inicial dos logaritmos.

No entanto, vale notar que os parâmetros curriculares nacionais estabelecem que, entre as habilidades que se espera que os estudantes desenvolvam, está a capacidade de consultar e interpretar dados expostos em tabelas. Isto posto, as tábuas de logaritmos são coleções de dados bastante úteis para se explicar como uma tabela pode ser usada para resolver problemas práticos, como a multiplicação de números grandes.

Esta aula está dividida em duas partes. Nesta primeira, adotamos uma abordagem mais tradicional, que define logaritmo como expoente; dessa forma, funções logarítmicas aparecem como inversas de funções exponenciais. Na segunda parte, adotaremos a abordagem que pode ser encontrada nas sugestões de leitura complementar [1] e [3]: definiremos a função logarítmica de base e usando a noção de área sob uma hipérbole. A função exponencial $x \mapsto e^x$ surgirá, então, como inversa dessa função logarítmica.

Sugestões de Leitura Complementar

- A. Caminha. Tópicos de Matematica Elementar, vol. 3, segunda edição. SBM, Rio de Janeiro, 2013.
- G. Iezzi, O. Dolce, C. Murakami. Fundamentos de Matemática Elementar, vol. 2, quarta edição. São Paulo, Ed. Atual, 1985.
- 3. E. L. Lima. Logaritmos. SBM, Rio de Janeiro, 1991.

