Material Teórico - Módulo Trigonometria II

Transformações de soma em produto

Segundo Ano do Ensino Médio

Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto

21 de setembro de 2022

1 Transformação de soma em produto

Na aula passada estudamos, dentre outras, a fórmula para calcular o **seno da soma** de dois arcos, ou seja, sen(A + B), dada por:

$$sen(A + B) = sen(A)cos(B) + sen(B)cos(A).$$

1.1 Soma de senos

Agora, vamos deduzir uma fórmula para a **soma dos senos** de dois arcos, ou seja, para

$$\operatorname{sen}(\alpha) + \operatorname{sen}(\beta)$$
.

Esse tipo de fórmula costuma ser útil, pois há casos em que não sabemos os valores de $sen(\alpha)$ e $sen(\beta)$ individualmente, mas conseguimos calcular a sua soma. Vamos mostrar que:

$$\operatorname{sen}(\alpha) + \operatorname{sen}(\beta) = 2 \operatorname{sen}\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right).$$
 (1)

Dado o formato da expressão acima, dizemos que esta é uma das fórmulas que "transforma uma soma em um produto" (de um número e funções seno e cosseno aplicadas a argumentos específicos).

Primeiramente, vamos demonstrar porque a fórmula acima é verdadeira (conhecer essa demonstração pode ser útil, caso você esqueça da fórmula mas lembre das fórmulas da aula passada). Comecemos com duas das fórmulas que estudamos na aula passada:

$$\begin{cases} \operatorname{sen}(A+B) = \operatorname{sen}(A)\cos(B) + \operatorname{sen}(B)\cos(A) \\ \operatorname{sen}(A-B) = \operatorname{sen}(A)\cos(B) - \operatorname{sen}(B)\cos(A). \end{cases}$$
 (2)

Somando as duas igualdades acima, observe que os termos "sen(B) cos(A)" irão cancelar-se, fornecendo:

$$\operatorname{sen}(A+B) + \operatorname{sen}(A-B) = 2\operatorname{sen}(A)\cos(B). \tag{3}$$

Agora, faça a substituição de variáveis

$$\begin{cases} A + B = \alpha \\ A - B = \beta \end{cases}.$$

Para terminar, precisamos calcular os valores de A e B, em termos de α e β , resolvendo o sistema acima. Somando as duas equações do sistema, temos

$$(A + \mathcal{B}) + (A - \mathcal{B}) = \alpha + \beta \implies 2A = \alpha + \beta;$$

logo,

$$A = \frac{\alpha + \beta}{2}.$$

Por outro lado, subtraindo a segunda equação do sistema da primeira obtemos:

$$(\mathcal{A} + B) - (\mathcal{A} - B) = \alpha - \beta \implies 2B = \alpha - \beta;$$

$$B = \frac{\alpha - \beta}{2}.$$

logo,

$$B = \frac{\alpha - \beta}{2}.$$

De posse dos valores de A + B, A - B, $A \in B$, basta substituí-los na equação (3) para obter:

$$\operatorname{sen}(\alpha) + \operatorname{sen}(\beta) = 2 \operatorname{sen}\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right).$$

Observação 1. Na expressão acima, veja que como $\cos(-x) =$ $\cos(x)$ para todo x, poderíamos calcular $\cos\left(\frac{\beta-\alpha}{2}\right)$ ao invés $de \cos\left(\frac{\alpha-\beta}{2}\right)$. Isso também segue do fato de que

$$sen(\alpha) + sen(\beta) = sen(\beta) + sen(\alpha).$$

Vejamos, agora, dois exemplos ilustrando a aplicação da fórmula deduzida acima.

Exemplo 2. Calcule o valor de $sen(75^{\circ}) + sen(15^{\circ})$.

Solução. Vamos aplicar diretamente a fórmula (1), com $\alpha = 75^{\circ}$ e $\beta = 15^{\circ}$. Obtemos:

$$sen(75^{\circ}) + sen(15^{\circ}) = 2 sen\left(\frac{75^{\circ} + 15^{\circ}}{2}\right) cos\left(\frac{75^{\circ} - 15^{\circ}}{2}\right)
= 2 sen(45^{\circ}) cos(30^{\circ})
= 2 \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}
= \frac{\sqrt{6}}{2}.$$

Exemplo 3. Mostre que $sen(20^\circ) + sen(40^\circ) = sen(80^\circ)$.

Solução. Novamente, temos uma aplicação direta de (1). Fazendo $\alpha=20^\circ$ e $\beta=40^\circ$, obtemos:

$$\begin{split} \operatorname{sen}(20^\circ) + \operatorname{sen}(40^\circ) &= 2 \operatorname{sen}\left(\frac{20^\circ + 40^\circ}{2}\right) \operatorname{cos}\left(\frac{20^\circ - 40^\circ}{2}\right) \\ &= 2 \operatorname{sen}(30^\circ) \operatorname{cos}(-10^\circ) \\ &= 2 \cdot \frac{1}{2} \cdot \operatorname{cos}(-10^\circ) \\ &= \operatorname{cos}(-10^\circ) \,. \end{split}$$

Agora, uma vez que $\cos(-x) = \cos(x) = \sin(90^{\circ} - x)$, temos $\cos(-10^{\circ}) = \sin(90^{\circ} - 10^{\circ}) = \sin(80^{\circ})$. Portanto,

$$\operatorname{sen}(20^{\circ}) + \operatorname{sen}(40^{\circ}) = \operatorname{sen}(80^{\circ}),$$

como queríamos demonstrar.

1.2 Diferença de senos

Seguindo os mesmos passos da seção anterior, podemos obter uma fórmula para a *diferença* entre senos:

$$\operatorname{sen}(\alpha) - \operatorname{sen}(\beta) = 2 \operatorname{sen}\left(\frac{\alpha - \beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right).$$
 (4)

http://matematica.obmep.org.br/matematica@obmep.org.br

P.3

П

Basta, nas fórmulas (2), subtrair a segunda equação da primeira (ao invés de somá-las, como fizemos antes). Nesse caso, os termos "sen(A) cos(B)" é que serão cancelados, o que nos fornecerá:

$$sen(A+B) - sen(A-B) = 2 sen(B) cos(A).$$

Novamente fazendo a substituição $A+B=\alpha, A-B=\beta,$ $A=(\alpha+\beta)/2$ e $B=(\alpha-\beta)/2$, obtemos a expressão (4).

Observação 4. Como

$$sen(\alpha) - sen(\beta) \neq sen(\beta) - sen(\alpha),$$

na fórmula da diferença de senos é muito importante manter a ordem de α e β ao calcular $\frac{\alpha-\beta}{2}$. De fato, note que $\operatorname{sen}(-x) = -\operatorname{sen}(x)$, $\log o$,

$$\operatorname{sen}\left(\frac{\beta-\alpha}{2}\right) = -\operatorname{sen}\left(\frac{\alpha-\beta}{2}\right).$$

1.3 Soma e diferença de cossenos

A fórmula que transforma uma soma de cossenos em um produto é

$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right).$$
 (5)

A fim de demonstrá-la, partiremos novamente de duas fórmulas que estudamos na aula passada. Claro, dessa vez tomamos por base as fórmulas dos cossenos:

$$\begin{cases} \cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B) \\ \cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B). \end{cases}$$
 (6)

Somando as duas expressões acima, observe que, dessa vez, são os termos "sen(A) sen(B)" que irão cancelar-se, fornecendo:

$$\cos(A+B) + \cos(A-B) = 2\cos(A)\cos(B). \tag{7}$$

Como antes, basta fazer a (mesma) substituição de variáveis: $A + B = \alpha$, $A - B = \beta$, $A = (\alpha + \beta)/2$ e $B = (\alpha - \beta)/2$. Substituindo essas igualdades em (7), obtemos diretamente a fórmula desejada, (1.3).

Por outro lado, podemos obter uma fórmula para a diferença entre cossenos, partindo das identidades (6), mas, agora, subtraindo a segunda equação da primeira. Os termos " $\cos(A)\cos(B)$ " serão cancelados, o que nos fornecerá:

$$\cos(A+B) - \cos(A-B) = -2\operatorname{sen}(A)\operatorname{sen}(B).$$

Mais uma vez, substituindo $A + B = \alpha$, $A - B = \beta$, $A = (\alpha + \beta)/2$ e $B = (\alpha - \beta)/2$, obtemos a fórmula:

$$\cos(\alpha) - \cos(\beta) = -2 \operatorname{sen}\left(\frac{\alpha + \beta}{2}\right) \operatorname{sen}\left(\frac{\alpha - \beta}{2}\right).$$

Exemplo 5. Mostre que

$$\frac{\text{sen}(30^\circ) + \text{sen}(40^\circ) + \text{sen}(50^\circ)}{\cos(30^\circ) + \cos(40^\circ) + \cos(50^\circ)} = \text{tg}(40^\circ).$$

Solução. Já que 40 = (30 + 50)/2, vamos aplicar a fórmula para a soma de senos para calcular

$$sen(30^{\circ}) + sen(50^{\circ}),$$

na esperança de que isso simplifique a expressão $sen(30^{\circ}) + sen(40^{\circ}) + sen(50^{\circ})$ (numerador da fração do enunciado). Vejamos! Pela fórmula para a soma de senos, temos:

$$sen(50^{\circ}) + sen(30^{\circ}) = 2 sen\left(\frac{50^{\circ} + 30^{\circ}}{2}\right) cos\left(\frac{50^{\circ} - 30^{\circ}}{2}\right)$$
$$= 2 sen(40^{\circ}) cos(10^{\circ}).$$

Logo,

$$sen(30^{\circ}) + sen(40^{\circ}) + sen(50^{\circ}) =$$

$$= 2 sen(40^{\circ}) cos(10^{\circ}) + sen(40^{\circ})$$

$$= sen(40^{\circ})(2 cos(10^{\circ}) + 1).$$

Agora, partindo para o denominador, vamos aplicar a fórmula para a soma de cossenos para calcular $\cos(30^{\circ}) + \cos(50^{\circ})$. Vejamos:

$$\cos(50^{\circ}) + \cos(30^{\circ}) = 2\cos\left(\frac{30^{\circ} + 50^{\circ}}{2}\right)\cos\left(\frac{50^{\circ} - 30^{\circ}}{2}\right)$$
$$= 2\cos(40^{\circ})\cos(10^{\circ}).$$

Logo,

$$\begin{aligned} \cos(30^\circ) + \cos(40^\circ) + \cos(50^\circ) &= \\ &= 2\cos(40^\circ)\cos(10^\circ) + \cos(40^\circ) \\ &= \cos(40^\circ) \big(2\cos(10^\circ) + 1\big). \end{aligned}$$

Finalmente, podemos dividir as expressões obtidas para o numerador e o denominador, o que nos dá:

$$\frac{\sin(30^\circ) + \sin(40^\circ) + \sin(50^\circ)}{\cos(30^\circ) + \cos(40^\circ) + \cos(50^\circ)} = \frac{\sin(40^\circ)(2\cos(10^\circ) + 1)}{\cos(40^\circ)(2\cos(10^\circ) + 1)}$$
$$= \frac{\sin(40^\circ)}{\cos(40^\circ)} = \operatorname{tg}(40^\circ).$$

2 Mais exemplos

Nesta seção, discutimos mais alguns exemplos de aplicações interessantes das fórmulas de transformação em produto.

Exemplo 6. Mostre que para todo x valem as seguintes relações:

(a)
$$\operatorname{sen}\left(\frac{3x}{2}\right) - \operatorname{sen}\left(\frac{x}{2}\right) = 2\operatorname{sen}\left(\frac{x}{2}\right)\cos x$$
.

(b)
$$\operatorname{sen}\left(\frac{(2n+1)x}{2}\right) - \operatorname{sen}\left(\frac{(2n-1)x}{2}\right) = 2\operatorname{sen}\left(\frac{x}{2}\right)\cos(nx)$$
, para todo n natural.

Em seguida, use os itens anteriores para simplificar a soma:

$$S = \cos(x) + \cos(2x) + \cos(3x) + \ldots + \cos(mx),$$

em que m é um natural dado e x é um real tal que sen $(\frac{x}{2}) \neq 0$.

Solução. O item (a) é uma aplicação direta da fórmula para a diferença entre senos,

$$\operatorname{sen}(\alpha) - \operatorname{sen}(\beta) = 2\operatorname{sen}\left(\frac{\alpha - \beta}{2}\right)\cos\left(\frac{\alpha + \beta}{2}\right).$$

Fazendo $\alpha=3x/2$ e $\beta=x/2$, temos que $(\alpha-\beta)/2=(\frac{3x}{2}-\frac{x}{2})/2=x/2$ e $(\alpha+\beta)/2=x$, logo,

$$\operatorname{sen}\left(\frac{3x}{2}\right) - \operatorname{sen}\left(\frac{x}{2}\right) = 2\operatorname{sen}\left(\frac{x}{2}\right)\cos x.$$

O item (b) segue exatamente da mesma forma, bastando tomar $\alpha = (2n+1)x/2$ e $\beta = (2n-1)x/2$, de modo que,

$$\frac{\alpha - \beta}{2} = \frac{1}{2} \left(\frac{(2n+1)x}{2} - \frac{(2n-1)x}{2} \right) = \frac{1}{2} \cdot \frac{2x}{2} = \frac{x}{2}.$$

Resta calcular a expressão S do enunciado. Para isso, vamos somar a relação deduzida no item (b), quando o natural n varia de 1 a m. Assim,

$$\begin{cases}
\operatorname{sen}\left(\frac{3x}{2}\right) - \operatorname{sen}\left(\frac{x}{2}\right) = 2\operatorname{sen}\left(\frac{x}{2}\right)\cos(x) \\
\operatorname{sen}\left(\frac{5x}{2}\right) - \operatorname{sen}\left(\frac{3x}{2}\right) = 2\operatorname{sen}\left(\frac{x}{2}\right)\cos(2x) \\
\operatorname{sen}\left(\frac{7x}{2}\right) - \operatorname{sen}\left(\frac{5x}{2}\right) = 2\operatorname{sen}\left(\frac{x}{2}\right)\cos(3x) \\
\vdots \\
\operatorname{sen}\left(\frac{(2m+1)x}{2}\right) - \operatorname{sen}\left(\frac{(2m-1)x}{2}\right) = 2\operatorname{sen}\left(\frac{x}{2}\right)\cos(mx)
\end{cases}$$
(8)

Somando membro a membro todas as igualdades acima, no lado esquerdo temos uma soma telescópica (em que o termo positivo de cada relação cancela com o termo negativo da relação que a segue, com exceção da última). No lado direito, podemos simplesmente colocar $2 \operatorname{sen} \frac{x}{2}$ em evidência. Com isso, obtemos:

$$\operatorname{sen}\left(\frac{(2m+1)x}{2}\right) - \operatorname{sen}\left(\frac{x}{2}\right) =$$

$$= 2\operatorname{sen}\left(\frac{x}{2}\right)\left(\cos x + \cos 2x + \cos 3x + \dots + \cos mx\right).$$

Concluímos que

$$\cos(x) + \cos(2x) + \cos(3x) + \dots + \cos(mx) =$$

$$= \frac{\operatorname{sen}\left(\frac{(2m+1)x}{2}\right) - \operatorname{sen}\left(\frac{x}{2}\right)}{2\operatorname{sen}\left(\frac{x}{2}\right)}.$$

Opcionalmente, podemos escrever sen $\left(\frac{(2m+1)x}{2}\right)$ – sen $\left(\frac{x}{2}\right)$ como

$$2 \operatorname{sen}\left(\frac{mx}{2}\right) \cos\left(\frac{(m+1)x}{2}\right),\,$$

obtendo

$$S = \frac{\operatorname{sen}\left(\frac{mx}{2}\right)\operatorname{cos}\left(\frac{(m+1)x}{2}\right)}{\operatorname{sen}\left(\frac{x}{2}\right)}.$$

Observação 7. O real objetivo do exemplo 6 é a simplificação da soma S; os demais itens são dicas para tal. Imagine tentar calcular S sem que o problema informe os itens (a) e (b)! O truque de escrever $2 \operatorname{sen}(x/2) \cos(nx)$ como uma diferença de senos e obter uma soma telescópica não é nada óbvio.

O leitor que possui conhecimentos sobre número complexos pode calcular S de outra maneira. Para tanto, basta tomar o complexo $z = \cos x + i \sin x$ e lembrar da fórmula de de Moivre, que diz que $z^n = \cos(nx) + i \sin(nx)$. Por fim, resta notar que $\cos(x) + \cos(2x) + \ldots + \cos(mx)$ é a parte real de $z + z^2 + \ldots + z^m$.

Como ponto positivo dessa abordagem, o cálculo de progressões geométricas acaba sendo mais mecânico, não requerendo um truque especial como o de considerar uma soma telescópica específica. Por outro lado, como ponto negativo, uma vez calculada a soma da progressão, obter sua parte real é um processo relativamente trabalhoso. Vejamos:

 $Para\ z \neq 1,\ temos$

$$z + z^{2} + \ldots + z^{m} = \frac{z^{m+1} - z}{z - 1}.$$
 (9)

http://matematica.obmep.org.br/matematica@obmep.org.br

Seja $\bar{z} = \cos x - i \sec x$ o conjugado de z. Veja que $z \cdot \bar{z} = 1$ e que $\overline{z-1} = \bar{z} - 1$. Assim, multiplicando o numerador e o denominador (9) por $\bar{z} - 1$ obtemos

$$\frac{z^{m+1}-z}{z-1} \cdot \frac{\bar{z}-1}{\bar{z}-1} = \frac{z^m - z^{m+1} - 1 + z}{2 - z\,\bar{z}}.$$

O denominador $2-z\,\bar{z}$ é igual ao número real $2-2\cos(x)$, ou, ainda, $2(1-\cos(x))$. Por sua vez, a parte real do numerador é igual a

$$(\cos mx - \cos(m+1)x) - (1 - \cos x).$$

Portanto,

$$S = \frac{\cos mx - \cos(m+1)x - (1-\cos x)}{2(1-\cos x)}.$$

Por fim, usando a fórmula para a diferença entre cossenos, podemos chegar à mesma resposta obtida no exemplo 6.

O próximo exemplo segue passos semelhantes ao anterior para calcular uma expressão diferente.

Exemplo 8. Resolva cada item abaixo.

(a) Mostre que

$$\operatorname{sen}^2(nx) = \frac{1 - \cos(2nx)}{2}.$$

(b) Mostre que

$$sen((2n+1)x) - sen((2n-1)x) = 2sen(x)cos(2nx).$$

(c) Simplifique a soma

$$S = \operatorname{sen}^{2}(x) + \operatorname{sen}^{2}(2x) + \operatorname{sen}^{2}(3x) + \dots + \operatorname{sen}^{2}(mx),$$

em que m é um natural dado e x é um real tal que $\sin x \neq 0$.

Solução. O item (a) segue diretamente da fórmula para o seno da metade de um arco (já que nx é a metade de 2nx). Para quem não conhece essa fórmula, vamos deduzi-la rapidamente, a partir da fórmula para o cosseno de um arco duplo (que vimos na aula passada) e da relação fundamental. De fato, para qualquer arco α temos que

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha;$$

como $\cos^2(\alpha) = 1 - \sin^2(\alpha)$, segue que

$$\cos(2\alpha) = 1 - 2\sin^2(\alpha),$$

logo,

$$\operatorname{sen}^2(\alpha) = \frac{1 - \cos(2\alpha)}{2}.$$

Daí, basta fazer $\alpha = nx$.

O item (b) é uma aplicação direta da fórmula para a diferença entre senos:

$$\operatorname{sen}(\alpha) - \operatorname{sen}(\beta) = 2 \operatorname{sen}\left(\frac{\alpha - \beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right).$$

Fazendo $\alpha=(2n+1)x$ e $\beta=(2n-1)x$, temos que $\alpha-\beta=2x$ e $\alpha+\beta=4nx$. Então,

$$sen((2n+1)x) - sen((2n-1)x) = 2 sen(x) cos(2nx).$$

Para o item (c), a expressão que se pede, S, é uma soma de quadrados de senos. Usando o item (a) para reescrever cada um desses quadrados, obtemos a expressão:

$$S = \frac{1 - \cos(2x)}{2} + \frac{1 - \cos(4x)}{2} + \ldots + \frac{1 - \cos(2mx)}{2}.$$

Logo,

$$S = \frac{m}{2} - \frac{1}{2} (\cos(2x) + \cos(4x) + \cos(6x) + \dots + \cos(2mx)).$$

Por fim, para calcular a soma $\cos(2x) + \cos(4x) + \cos(6x) + \dots + \cos(2mx)$, vamos usar o item (b) várias vezes (da mesma forma que fizemos no exemplo 6).

$$\begin{cases}
sen(3x) - sen(x) = 2 sen(x) cos(2x) \\
sen(5x) - sen(3x) = 2 sen(x) cos(4x) \\
sen(7x) - sen(5x) = 2 sen(x) cos(6x) \\
\vdots \\
sen((2m+1)x) - sen(2m-1)x) = 2 sen(x) cos(mx)
\end{cases}$$

Somando todas as igualdades acima e observando que a soma do lado esquerdo é telescópica, segue que:

$$sen ((2m+1)x) - sen(x) =$$
= 2 sen(x) (cos(2x) + cos(4x) + cos(6x) + ... + cos(2mx)).

Assim, concluímos que

$$\cos(2x) + \cos(4x) + \cos(6x) + \dots + \cos(2mx) =$$

$$= \frac{\operatorname{sen}((2m+1)x) - \operatorname{sen}(x)}{2\operatorname{sen}(x)}$$

Por fim, a expressão que se pede no enunciado é:

$$S = \frac{m}{2} - \frac{\operatorname{sen}((2m+1)x) - \operatorname{sen}(x)}{4\operatorname{sen}(x)}.$$

Observação 9. Também é possível chegar ao resultado do último exemplo acima usando a fórmula para $\cos(x) + \cos(2x) + \dots + \cos(mx)$ obtida no exemplo 6, substituindo x por 2x. Convença-se da validade dessa afirmação!

Dicas para o Professor

Sugerimos que o conteúdo desta aula seja abordado em dois encontros de 50 minutos.

O uso de números complexos no auxílio da resolução de problemas de Trigonometria (e vice-versa) é algo que deveria ser mais difundido no Ensino Médio (contudo, requer que a turma tenha uma boa familiaridade com números complexos, ou pelo menos que os temas sejam apresentados em paralelo). No módulo "Números Complexos – Forma Geométrica" do Terceiro ano do Ensino Médio, usamos as fórmulas de $\operatorname{sen}(A+B)$ e $\cos(A+B)$ para demonstrar que $\operatorname{cis}(\theta_1) \cdot \operatorname{cis}(\theta_2) = \operatorname{cis}(\theta_1+\theta_2)$.

A referência [1] desenvolve os rudimentos de Trigonometria necessários a aplicações geométricas. A referência [2] traz um curso completo de Trigonometria.

Sugestões de Leitura Complementar

- A. Caminha. Tópicos de Matemática Elementar, Volume
 Geometria Euclidiana Plana. SBM, Rio de Janeiro,
 2013.
- G. Iezzi Os Fundamentos da Matemática Elementar, Volume 3: Trigonometria. Atual Editora, Rio de Janeiro, 2013.