## Material Teórico - Módulo Cardinalidade de Conjuntos

### Contando os Elementos de um Conjunto

**Tópicos Adicionais** 

Autor: Antonio Caminha M. Neto

20 de Junho de 2024



## 1 Introdução

Neste módulo, discutiremos como definir o *tamanho* de um conjunto e como comparar os tamanhos de dois conjuntos diferentes.

À primeira vista, isso pode parecer uma bobagem. Realmente, para  $X = \{a, b, c\}$  e  $Y = \{w, x, y, z\}$ , por exemplo, já estamos acostumados a dizer que X tem três elementos e Y tem quatro elementos e que, por isso, X é menor que Y em relação ao número de elementos.

Mas e no caso em que  $\mathbb{N}=\{1,2,3,4,5,\ldots\}$ , o conjunto dos naturais, e  $\mathbb{P}=\{2,4,6,8,\ldots\}$ , o conjunto dos naturais pares? Por um lado, ambos são conjuntos infinitos; por outro,  $\mathbb{P}$  é um subconjunto de  $\mathbb{N}$ . Então, o infinito de  $\mathbb{P}$  é menor que o infinito de  $\mathbb{N}$ ?

Antes de passarmos a uma discussão matematicamente precisa dessa problemática, vejamos um exemplo que mostra que o conceito de *infinito* é, por vezes, paradoxal à intuição comum.

**Exemplo 1** (o hotel de Hilbert). <sup>1</sup> Imagine um hotel com infinitos quartos, numerados 1, 2, 3, 4 e assim por diante. Certo dia, chegam ao hotel infinitos hóspedes, de nomes  $h_1$ ,  $h_2$ ,  $h_3$ ,  $h_4$ , .... A recepção do hotel designa o quarto i para o hóspede  $h_i$ , de forma que o hóspede  $h_1$  instala-se no quarto 1, o hóspede  $h_2$  instala-se no quarto 2, o hóspede  $h_3$  instala-se no quarto 3 etc. Assim, esse dia termina com todos os quartos do hotel ocupados.

No dia seguinte, um novo hóspede chega ao hotel e encontra todos os quartos ocupados. A recepção, rapidamente arranja um quarto para ele, simplesmente pedindo que o hóspede  $h_i$ , que encontrava-se no quarto i, troque de quarto, indo agora para o quarto i+1. Assim, o hóspede  $h_1$  muda para o quarto 2, o hóspede  $h_2$  para o quarto 3, o hóspede  $h_3$  para o quarto 4 etc, e o quarto 1, que antes estava ocupado, agora pode receber o novo hóspede.

<sup>&</sup>lt;sup>1</sup>O nome hotel de Hilbert é uma homenagem ao matemático alemão dos séculos XIX e XX David Hilbert, que apresentou esse exemplo numa palestra intitulada "Sobre o infinito", proferida em 1925.

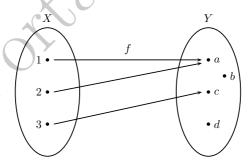
Para complicar as coisas, no próximo dia chegam infinitos novos hóspedes, de nomes  $\ell_1, \ell_2, \ell_3, \ldots$ , mas a recepção não se abala e garante que vai colocar cada um em um quarto vazio. Dessa vez, ela faz isso deslocando o hóspede que estava no quarto i para o quarto 2i. Assim, o o hóspede que estava no quarto 1 muda para o quarto 2, o que estava no quarto 2 muda para o quarto 4, o que estava no quarto 3 muda para o quarto 6 etc, e os infinitos quartos 1, 3, 5, ... ficam vazios, prontos para receber os novos hóspedes. A recepção, então, designa o quarto 2i-1 para o hóspede  $\ell_i$ , de forma que  $\ell_1$  fica no quarto  $2 \cdot 1 - 1 = 1$ ,  $\ell_2$  fica no quarto  $2 \cdot 2 - 1 = 3$ ,  $\ell_3$  fica no quarto  $2 \cdot 3 - 1 = 5$ , e assim sucessivamente.

O infinito é realmente algo estranho . . .

## 2 Funções

A comparação entre tamanhos de conjuntos é feita por meio de funções. Por isso, nesta seção nos concentraremos em revisar rapidamente os conceitos relevantes.

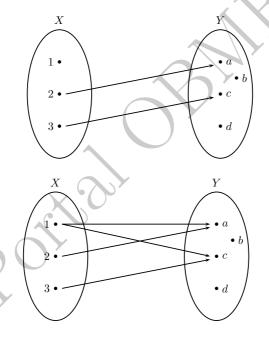
Dados conjuntos não vazios X e Y, uma função f de X em Y é uma regra que, a cada elemento  $x \in X$ , faz corresponder um único elemento  $y \in Y$ . Por vezes, representamos uma tal correspondência utilizando diagramas como o da figura a seguir.



Nela,  $X = \{1, 2, 3\}$ ,  $Y = \{a, b, c, d\}$  e cada seta indica que elemento  $y \in Y$  corresponde a cada  $x \in X$ .

Escrevemos  $f:X\to Y$  para denotar que f é uma função de X em Y. Nesse caso, o elemento  $y\in Y$  associado a  $x\in X$  por f é denotado por y=f(x), sendo denominado a **imagem** de  $x\in X$  pela função f. Assim, no exemplo da figura anterior, temos  $f(1)=a,\ f(2)=a,\ f(3)=c;$  em palavras, a é a imagem de 1 e de 2 por f, e c é a imagem de 3 por f.

O exemplo anterior deixa claro que a definição de função permite que, no diagrama correspondente, um ou mais elementos de Y  $n\~ao$  recebam setas ou, ainda, que um ou mais elementos de Y recebam mais de uma seta. Note, contudo, que os próximos dois diagramas  $n\~ao$  representam funções.



A situação da penúltima figura é proibida porque não há nenhuma seta partindo do elemento  $1 \in X$ ; a da última figura é proibida porque, do elemento  $1 \in X$ , parte mais de uma seta.

O mais das vezes, trabalharemos com funções  $f: X \to Y$  tais que  $X,Y \subset \mathbb{R}$ . Em tais casos, geralmente indicaremos quem é o elemento  $f(x) \in Y$  associado a um elemento genérico  $x \in X$  por meio de uma *fórmula* em x que explicita uma regra que a função deva satisfazer.

Por exemplo, podemos dizer: considere a função  $f: \mathbb{R} \to \mathbb{R}$  dada por  $f(x) = x^2$ . Isto quer dizer que a função associa, a cada  $x \in \mathbb{R}$ , seu quadrado  $x^2$ . Veja que os requisitos definidores de uma função estão satisfeitos, uma vez que, a cada  $x \in \mathbb{R}$ , temos associado um único outro real f(x), qual seja,  $x^2$ . Assim é que, ainda em relação a esse exemplo, temos  $f(\sqrt{2}) = (\sqrt{2})^2 = 2$ ,  $f(3) = 3^2 = 9$  etc.

Neste módulo, estamos interessados em funções satisfazendo certas propriedades adicionais, colecionadas na seguinte

**Definição 2.**  $Uma\ função\ f: X \to Y \ \acute{e}:$ 

- (a) Injetora, ou injetiva, se, para todo  $y \in Y$ , existir no máximo um  $x \in X$  tal que f(x) = y.
- (b) Sobrejetora, ou sobrejetiva se sua imagem for todo o conjunto Y, isto é, se, para todo  $y \in Y$ , existir pelo menos um  $x \in X$ , tal que y = f(x).
- (c) **Bijetora**, ou **bijetiva**, se for ao mesmo tempo injetora e sobrejetora.

Um modo eficiente de verificar se uma função  $f:X\to Y$  é injetora é verificar se a implicação

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

é satisfeita para todos  $x_1, x_2 \in X$ .

Da mesma forma, para garantirmos que f é sobrejetora, devemos ser capazes de, para cada  $y \in Y$ , obter pelo menos uma solução  $x \in X$  para a equação f(x) = y.

**Exemplo 3.** Se  $\mathbb{N} = \{1, 2, 3, \ldots\}$  e  $f : \mathbb{N} \to \mathbb{N}$  é a função dada por f(n) = 2n, para todo  $n \in \mathbb{N}$ , então f é injetiva, mas não sobrejetiva. Realmente, dados  $m, n \in \mathbb{N}$ , temos que

$$f(m) = f(n) \Rightarrow 2m = 2n \Rightarrow m = n.$$

Por outro lado, como 2n é um número par, para todo  $n \in \mathbb{N}$ , vemos que nenhum natural ímpar pertence à imagem de f; assim, f não pode ser sobrejetiva.

Denotemos por  $\mathbb{P}=\{2,4,6,8,\ldots\}$  o conjunto dos naturais pares e considerarmos a função  $g:\mathbb{N}\to\mathbb{P}$  dada por g(n)=2n, para todo  $n\in\mathbb{N}$ . Argumentando como no parágrafo anterior, vemos que g é injetiva. Contudo, g também é sobrejetiva: dado  $m\in\mathbb{P}$ , temos, pela definição de número par, m=2n, para algum  $n\in\mathbb{N}$ ; assim, m=g(n), isto é, m pertence à imagem de g.

**Exemplo 4.** Dado um conjunto não vazio X, a **função identidade de** X é a função  $\mathrm{Id}_X: X \to X$ , tal que

$$\operatorname{Id}_X(x) = x, \ \forall \ x \in X.$$

Essa função é claramente bijetiva.

Dadas as funções  $f:X\to Y$  e  $g:Y\to Z$  temos, em última análise, regras bem definidas para, partindo de  $x\in X$ , obter  $y=f(x)\in Y$  e, em seguida, obter  $z=g(y)\in Z$ . Parece, então, razoável que possamos formar uma função saindo de X diretamente para Z. Este é de fato o caso, de acordo com a seguinte

**Definição 5.** Dadas as funções  $f: X \to Y$  e  $g: Y \to Z$ , a **função composta** de f e g (nessa ordem) é a função  $g \circ f: X \to Z$  definida, para cada  $x \in X$ , por

$$(g \circ f)(x) = g(f(x)).$$

Assim, a definição acima diz que, para encontrar a imagem de  $x \in X$  por  $g \circ f$ , basta encontrar a imagem de  $f(x) \in Y$  por g. Vejamos dois exemplos.

**Exemplo 6.** Considere as funções  $f,g:\mathbb{R}\to\mathbb{R}$  dadas por  $f(x)=x^2$  e  $g(x)=\frac{1}{x^2+1}$ . Temos  $g\circ f$  e  $f\circ g$  funções de  $\mathbb{R}$  em  $\mathbb{R}$ , com

$$(g \circ f)(x) = g(f(x)) = \frac{1}{(f(x))^2 + 1}$$
$$= \frac{1}{(x^2)^2 + 1} = \frac{1}{x^4 + 1}$$

$$(f \circ g)(x) = f(g(x)) = g(x)^2 = \left(\frac{1}{x^2 + 1}\right)^2 = \frac{1}{x^4 + 2x^2 + 1}.$$

O exemplo acima mostra algo interessante: podemos ter  $g \circ f \neq f \circ g$ . Bem entendido, pode mesmo acontecer que possamos formar  $g \circ f$  mas não  $f \circ g$  (ou vice-versa); basta termos, por exemplo,  $f: X \to Y$  e  $g: Y \to Z$ , com  $X \neq Z$ . Contudo, mesmo que possamos formar ambas as funções, o exemplo mostra que, ainda assim, pode ocorrer que  $g \circ f \neq f \circ g$ .

**Exemplo 7.** Se  $f:X\to Y$  é uma função arbitrária e  $\mathrm{Id}_X:X\to X$  e  $\mathrm{Id}_Y:Y\to Y$  são, respectivamente, as funções identidade de X e Y, então

$$f \circ \operatorname{Id}_X = f$$
 e  $\operatorname{Id}_Y \circ f = f$ .

Verifiquemos a igualdade  $f \circ \operatorname{Id}_X = f$ , sendo a verificação da outra totalmente análoga. Para tanto, basta notarmos que  $f \circ \operatorname{Id}_X$  é uma função de X em Y tal que, para todo  $x \in X$ ,

$$(f \circ \operatorname{Id}_X)(x) = f(\operatorname{Id}_X(x)) = f(x).$$

A proposição a seguir ensina como se comportam funções injetoras, sobrejetoras e bijetoras em relação à composição.

**Proposição 8.**  $Sejam f: X \to Y \ e \ g: Y \to Z \ funções \ dadas. Então:$ 

- (a) g, f injetoras  $\Rightarrow g \circ f$  injetora.
- $(b) \ g, f \ sobrejetoras \Rightarrow g \circ f \ sobrejetora.$
- (c) g, f bijetoras  $\Rightarrow g \circ f$  bijetora.

#### Prova.

(a) Utilizando sucessivamente as injetividades de g e f, temos, para  $x_1$  e  $x_2$  em X, que

$$(g \circ f)(x_1) = (g \circ f)(x_2) \Rightarrow g(f(x_1)) = g(f(x_2))$$
$$\Rightarrow f(x_1) = f(x_2)$$
$$\Rightarrow x_1 = x_2,$$

e  $g\circ f$ também é injetora.

(b) Escolhido arbitrariamente  $z \in Z$ , a sobrejetividade de g garante a existência de  $y \in Y$  tal que z = g(y). Por outro lado, a sobrejetividade de f assegura a existência de  $x \in X$  tal que f(x) = y. Então, temos

$$(g \circ f)(x) = g(f(x)) = g(y) = z,$$

de modo que  $g \circ f$  também é sobrejetiva.

(c) Segue dos itens (a) e (b) que

$$g$$
e  $f$ bijetoras  $\Rightarrow g$ e  $f$ injetoras e sobrejetoras 
$$\Rightarrow g\circ f \text{ injetora e sobrejetora}$$
 
$$\Rightarrow g\circ f \text{ bijetora.}$$

# 3 Conjuntos finitos

Em tudo o que segue, dado  $n \in \mathbb{N}$ , denotamos por  $I_n$  o conjunto dos naturais de 1 a n. Assim,

$$I_1 = \{1\}$$
  
 $I_2 = \{1, 2\}$   
 $I_3 = \{1, 2, 3\}$   
.....  
 $I_n = \{1, 2, 3, ..., n\}$ 

Comparamos o "tamanho" de dois conjuntos verificando se existe uma bijeção entre ambos. Formalmente, temos a seguinte

**Definição 9.** Dados conjuntos não vazios X e Y, diremos que X e Y têm cardinalidades iguais se existir uma bijeção  $f: X \to Y$ .

Assim, o exemplo 3 garante que os conjuntos infinitos  $\mathbb{N}$  e  $\mathbb{P}$  têm cardinalidades iguais.

Por outro lado, o conjunto  $X = \{a, b, c\}$  e  $I_3 = \{1, 2, 3\}$  têm cardinalidades iguais, uma vez que a função  $f: X \to I_3$  tal que f(a) = 1, f(b) = 2, f(c) = 3 é uma bijeção.

Quando um conjunto não vazio X tiver a mesma cardinalidade de  $I_n$ , para algum  $n \in \mathbb{N}$ , diremos que X tem n elementos ou que é finito, situação que denotaremos escrevendo

$$|X| = n$$
 ou  $\#X = n$ .

Veja, então, que contar a quantidade de elementos de um conjunto finito X é estabelecer uma bijeção entre X e  $I_n$ , para algum  $n \in \mathbb{N}$ .

Neste e nos próximos materiais, assumiremos sem demonstração a validade dos seguintes fatos (veja, contudo, o capítulo 2 de [2]):

- 1. Se  $I_m$  e  $I_n$  tiverem cardinalidades iguais (isto é, se existir uma bijeção  $f: I_m \to I_n$ ), então m = n.
- 2. Se m < n, então existe uma função injetiva, mas não sobrejetiva, de  $I_m$  em  $I_n$ .
- 3. Se m > n, então existe uma função sobrejetiva, mas não injetiva, de  $I_m$  em  $I_n$ .
- 4. Para todo  $n \in \mathbb{N}$ , existe função injetiva, mas não sobrejetiva, de  $I_n$  em  $\mathbb{N}$ .
- 5. Para todo  $n \in \mathbb{N}$ , existe função sobrejetiva, mas não injetiva, de  $\mathbb{N}$  em  $I_n$ .

Graças ao item 4 acima,  $\mathbb{N}$  é um conjunto **infinito**, isto é,  $n\tilde{a}o$  finito. Por outro lado, o exemplo 3 garante que  $\mathbb{P}$  também é infinito. Mais geralmente, tem-se o seguinte

**Exemplo 10.** Seja X um conjunto não vazio. Se X e  $\mathbb{N}$  tiverem cardinalidades iguais, então X não pode ser finito.

**Prova.** Seja  $f: \mathbb{N} \to X$  uma bijeção. Se X fosse finito, existiriam  $n \in \mathbb{N}$  e uma bijeção  $g: X \to I_n$ . Então, pelo item (c) da proposição 8, a composta  $g \circ f: \mathbb{N} \to I_n$  seria uma bijeção, o que o item 5 acima afirma ser impossível.  $\square$ 

Um ponto sutil, mas que deve ser observado com cuidado e será retomado posteriormente, é o seguinte: pelas definições dadas, o fato de um conjunto X ser infinito não significa que exista uma bijeção entre X e  $\mathbb{N}$ . De fato, posteriormente, mostraremos que  $\mathbb{R}$  é infinito, mas  $n\~ao$  existe uma bijeção entre  $\mathbb{N}$  e  $\mathbb{R}$ .

## Dicas para o Professor

Conforme mencionamos, a alegoria do *Hotel de Hilbert* remonta a uma palestra do próprio Hilbert. Elaborando aquele exemplo um pouco mais, imagine que, em um certo dia, cheguem ao hotel infinitos ônibus, cada um deles trazendo infinitos hóspedes. Como a recepção do hotel poderia alocá-los nos quartos, ainda deixando uma quantidade infinita de quartos vazios? O leitor intrigado pode consultar a referência [3] para descobrir a estratégia utilizada pela recepção.

A seção 2 é um extrato do capítulo 1 da referência [1]. Recomendamos sua leitura, ou, alternativamente, a leitura do capítulo 1 da referência [2], para muito mais sobre funções.

Sugerimos que sejam utilizadas duas sessões de 50min para expor o conteúdo deste material.

## Sugestões de Leitura Complementar

- 1. A. Caminha. Tópicos de Matemática Elementar, Volume 3: Introdução à Análise, terceira edição.
- E. L. Lima. Curso de Análise, volume 1, décima primeira edição. Rio de Janeiro, IMPA, 2014. Rio de Janeiro, SBM, 2023.
- 3. Wikipedia.  $Hotel\ de\ Hilbert.$