Material Teórico - Módulo de Introdução ao Cálculo - Fórmulas de Diferenciação

Exercícios - Parte II

Tópicos Adicionais

Autor: Tiago Caúla Ribeiro Revisor: Prof. Antonio Caminha M. Neto

11 de Março de 2024

Este material e o próximo continuam a apresentação de exemplos relacionados às regras de diferenciação.

1 Exemplos

Iniciamos com uma regra para diferenciar a composição $f\circ g$ quando f é derivável e g é uma função afim:

$$\frac{d(f(ax+b))}{dx} = a \cdot f'(ax+b),\tag{1}$$

para qualquer x no domínio da função $x\mapsto f(ax+b)$, sendo a,b reais fixados.

A relação (1) é imediata se a=0, caso em que ambos os membros se anulam. Se $a\neq 0$, fazendo y=ax+b e $h=a\Delta x$, temos, pela definição de derivada,

$$\frac{d(f(ax+b))}{dx} = \lim_{\Delta x \to 0} \frac{f(a(x+\Delta x)+b) - f(ax+b)}{\Delta x}$$

$$= a \cdot \lim_{\Delta x \to 0} \frac{f(y+h) - f(y)}{a\Delta x}$$

$$= a \cdot \lim_{h \to 0} \frac{f(y+h) - f(y)}{h}$$

$$= a \cdot f'(y) = a \cdot f'(ax+b),$$

como queríamos.

Os próximos dois exemplos fazem uso dessa regra.

Exemplo 1. Sejam $I \subset \mathbb{R}$ um intervalo $e \ f : I \to \mathbb{R}$ uma função derivável, satisfazendo

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2},\tag{2}$$

para quaisquer $x,y \in I$. Mostre que f é uma função afim.

Solução. Derivando a relação (2) primeiro em relação a x (interpretando y como uma constante) e depois em relação a

y (desta feita interpretando x como uma constante), obtemos, graças à fórmula (1),

$$\frac{f'(x)}{2} = \frac{f'(\frac{x+y}{2})}{2} = \frac{f'(y)}{2}.$$

Concluímos, assim, a igualdade f'(x) = f'(y), quaisquer que sejam $x,y \in I$. Portanto, f' é constante, digamos, f'(x) = a, para todo $x \in I$. Logo,

$$\frac{d(f(x) - ax)}{dx} = f'(x) - a = 0,$$

isto é, a função $I\ni x\mapsto f(x)-ax$ tem derivada nula e, assim, tal função também é constante, digamos, f(x)-ax=b para todo $x\in I$. Conclui-se que f(x)=ax+b, ou seja, f é uma função afim. \square

Observação 2. O exemplo anterior ainda é válido se a hipótese "f é derivável" for substituída por "f é monótona" ou "f é contínua". Veja o exemplo 9 da aula Resolução de Exercícios, no módulo Função Afim - 9° ano, e o exemplo 20 da aula Continuidades Laterais e em um Intervalo, no módulo Funções Contínuas.

Agora, vamos generalizar o exemplo 16 da aula Propriedades - Parte I, do módulo anterior. Lá, tínhamos uma função derivável $f: \mathbb{R} \to \mathbb{R}$ tal que f(0) = 0 e $|f'| \le |f|$; a conclusão foi de que f é identicamente nula.

Relendo com atenção a solução apresentada naquela ocasião, notamos que ela serve ao caso mais geral no qual f está definida em um intervalo arbitrário I, com $f(x_0)=0$ para algum $x_0\in I$.

Além disso, basta que se tenha $|f'| \leq K \cdot |f|$, para alguma constante K, a fim de que f seja identicamente nula. Com efeito, se assim for, o caso K = 0 implica $f' \equiv 0$, de forma que f é constante e, daí, $f \equiv 0$ (uma vez que $f(x_0) = 0$). Se, por outro lado, tivermos K > 0, então a função linear $x \mapsto Kx$ transforma o intervalo I no intervalo $K \cdot I = \{Kx \mid x \in I\}$, de modo que a composição $K \cdot I \ni x \mapsto f(x/K) := g(x)$ está

bem definida, é derivável e tal que $g(Kx_0) = 0$. Pela regra (1), temos g'(x) = f'(x/K)/K, de sorte que

$$|g'(x)| = \frac{|f'(x/K)|}{K} \le \frac{K \cdot |f(x/K)|}{K} = |f(x/K)| = |g(x)|.$$

Pela extensão previamente comentada do exemplo 16 da aula citada, g é identicamente nula, ou melhor, $f \equiv 0$.

Portanto, podemos enunciar o

Exemplo 3. Sejam $I \subset \mathbb{R}$ um intervalo $e \ f : I \to \mathbb{R}$ uma função derivável, satisfazendo

$$|f'(x)| \le K|f(x)|,$$

para todo $x \in I$, sendo $K \ge 0$ uma constante. Se f se anula em algum ponto de I, então f é identicamente nula.

Da regra do quociente, obtemos a seguinte fórmula para o cálculo da derivada do recíproco de uma função:

$$\frac{d\left(\frac{1}{f(x)}\right)}{dx} = -\frac{f'(x)}{f(x)^2}.$$
 (3)

Verifique, como exercício, que a fórmula acima é válida em cada ponto x no qual f seja derivável e não nula.

Exemplo 4. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável, tal que f(0) = 0 e $f'(x) = f(x)^2$, para todo $x \in \mathbb{R}$. Mostre que f é identicamente nula.

1ª Solução. Primeiramente, note que $f' \ge 0$, de sorte que f é monótona não decrescente. Se f não fosse identicamente nula, digamos, f(a) > 0, com a positivo 1 , poderíamos definir

¹Esse é o único caso que interessa. De fato, supor $f \not\equiv 0$ significa assumir a existência de $a \not= 0$ tal que $f(a) \not= 0$. Pela monotonicidade de $f, a > 0 \Rightarrow f(a) \geq f(0) = 0$ (caso considerado), logo, f(a) > 0 (pois estamos supondo que $f(a) \not= 0$) enquanto (por um raciocínio análogo) $a < 0 \Rightarrow f(a) < 0$. Nesse último caso, trocamos f pela função $g : \mathbb{R} \to \mathbb{R}$ definida por g(x) = -f(-x). Como é fácil de ver, g é derivável, g(0) = 0, $g'(x) = f'(-x) = f(-x)^2 = g(x)^2$ e, agora, pondo b = -a, temos b > 0 e g(b) > 0.

 x_0 como a maior solução da equação f(x) = 0 no intervalo [0,a]. Então, $0 \le x_0 < a$ e f > 0 no intervalo $(x_0,a]$. Assim, pela fórmula (3), teríamos

$$\frac{d\left(x + \frac{1}{f(x)}\right)}{dx} = 1 - \frac{f'(x)}{f(x)^2} = 0,$$

para cada $x \in (x_0,a]$, de sorte que $x \mapsto x + 1/f(x)$ seria constante, digamos 1/f(x) = c - x, para todo $x \in (x_0,a]$ e uma certa constante c. Mas, quando $x \to x_0^+$, o primeiro membro da última igualdade tende a $1/0^+ = +\infty$, enquanto o 2^0 membro tende a $c - x_0$, o que é absurdo.

Portanto, f deve ser identicamente nula.

2ª Solução. Se f não fosse identicamente nula, ocorreria $f(a) \neq 0$ para algum $a \neq 0$. Se K é o valor máximo da função |f| restrita ao intervalo fechado I de extremos 0 e a, teríamos

$$|f'(x)| = |f(x)||f(x)| \le K|f(x)|,$$

para cada $x \in I$. Pelo exemplo anterior, $f|_I$ seria identicamente nula, o que é uma contradição.

Sejam $I \subset \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}$ uma função derivável. Sabemos que $f' \equiv 0$ implica f constante. Além disso, se f for duas vezes derivável e $f'' \equiv 0$, f' será constante e, conforme a solução do exemplo 1, f deve ser afim. Desse modo, se n=1 ou 2 e f é uma função n vezes derivável, com n-ésima derivada identicamente nula, então f é uma função polinomial de grau menor que n. Na realidade, esse fato é verdadeiro para todo n natural, conforme veremos a seguir.

Exemplo 5. Sejam $I \subset \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}$ uma função n vezes derivável. Se $f^{(n)} \equiv 0$, então f é uma função polinomial de grau menor que n.

Prova. Façamos a demonstração por indução em n natural, observando que já estabelecemos os casos n=1 e n=2.

Suponha, por hipótese de indução, que toda função k vezes derivável $f: I \to \mathbb{R}$, tal que $f^{(k)} \equiv 0$, é uma função polinomial de grau menor que k.

Para o passo de indução, seja $f: I \to \mathbb{R}$ uma função k+1 vezes derivável, com $f^{(k+1)} \equiv 0$. Devemos provar que f é uma função polinomial de grau menor que k+1. De fato, como $(f')^{(k)} = f^{(k+1)} \equiv 0$, podemos concluir, por hipótese de indução, que f' é uma função polinomial de grau menor que k, digamos,

$$f'(x) = a_{k-1}x^{k-1} + \ldots + a_1x + a_0.$$

Agora seja

$$P(x) = \frac{a_{k-1}}{k}x^k + \dots + \frac{a_1}{2}x^2 + a_0x,$$

de modo que P'(x) = f'(x), ou seja, $(f - P)' \equiv 0$. Então, f - P é constante e f = P + (f - P) é uma função polinomial de grau $\leq k < k + 1$.

Observação 6. Durante a solução do exemplo anterior, o seguinte fato foi estabelecido: se f' é um polinômio de grau n-1, então f é um polinômio de grau n.

Para o próximo exemplo, convém recordar a fórmula do movimento retilíneo uniformemente variado (MRUV):

$$s(t) = s_0 + v_0 t + \frac{a}{2} t^2.$$

Aqui, s_0 e v_0 são a posição e velocidade iniciais da partícula e a é a aceleração, suposta constante.

Exemplo 7. Uma partícula se desloca em um eixo com função posição s = s(t). Calcule s(3), sabendo que:

- (a) No instante t=0 a partícula está em repouso, na origem.
- (b) No intervalo de tempo [0,1] o movimento é uniformemente variado, com aceleração positiva.
- (c) No intervalo de tempo [1,3] a taxa de variação da aceleração é uma constante não nula.

(d) No instante t = 2 a partícula retorna à origem, com velocidade escalar unitária.

Solução. Seja a=a(t) a aceleração da partícula. Pelas condições (a) e (b), temos $s(t)=\frac{a_0}{2}t^2$ para cada $t\in[0,1]$, em que $a_0=a(0)>0$. No intervalo [1,3], $s'''(t)=a'(t)=:b_0$ é uma constante não nula, de sorte que, por sucessivas aplicações da observação 6, s(t) é um polinômio de grau 3 em t naquele intervalo de tempo.

Pelo exemplo 13 da aula Propriedades - $Parte\ II$ (módulo anterior) vale

$$s(t) = s(1) + s'(1)(t-1) + \frac{s''(1)}{2}(t-1)^2 + \frac{s'''(1)}{6}(t-1)^3,$$

para $1 \le t \le 3$. Por outro lado, a fórmula $s(t) = \frac{a_0}{2}t^2$ dá $s(1) = a_0/2$ e $s'(1) = s''(1) = a_0$, de forma que

$$s(t) = \frac{a_0}{2} + a_0(t-1) + \frac{a_0}{2}(t-1)^2 + \frac{b_0}{6}(t-1)^3,$$

para cada $t \in [1,3]$. Em particular, nesse mesmo intervalo de tempo, vale

$$s'(t) = a_0 + a_0(t-1) + \frac{b_0}{2}(t-1)^2.$$

Ademais, de acordo com a condição (d), s(2) = 0 e s'(2) = -1, ou seja,

$$2a_0 + b_0/6 = 0$$
 e $2a_0 + b_0/2 = -1$.

Resolvendo o sistema formado por tais equações, encontramos $a_0=1/4$ e $b_0=-3$, de onde segue que

$$s(3) = \frac{1}{8} + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 - \frac{1}{2} \cdot 8 = -23/8.$$

Exemplo 8. Sejam \mathcal{P} uma parábola de foco F e diretriz d. Dado $P \in d$, as tangentes à parábola por P tocam essa curva nos pontos A e B. Mostre que F pertence ao segmento AB.

http://matematica.obmep.org.br/matematica@obmep.org.br

Solução. Se escolhermos os eixos de modo que \mathcal{P} tenha equação $y=mx^2$, então F=(0,1/(4m)) e d:y=-1/(4m). Se $A=(a,ma^2)$ e $B=(b,mb^2)$, sabemos que as tangentes r e s a \mathcal{P} naqueles pontos têm equações

$$r: y = 2max - ma^2$$
 e $s: y = 2mbx - mb^2$.

Essas retas cruzam a diretriz d nos pontos

$$P_r = (x_r, -1/(4m)), P_s = (x_s, -1/(4m)),$$

em que $2max_r - ma^2 = -1/4m = 2mbx_s - mb^2$, ou seja, $x_r = a/2 - 1/(8m^2a)$ e $x_s = b/2 - 1/(8m^2b)$.

Porém, o problema informa que $P_r = P_s = P$, o que nos leva à relação $x_r = x_s$, ou seja,

$$a/2 - 1/(8m^2a) = b/2 - 1/(8m^2b).$$

A partir daí, é imediato que

$$\frac{b-a}{2} = \frac{a-b}{8m^2ab},$$

implicando $ab = -1/(4m^2)$, pois A e B são pontos distintos. Daí, sem perda de generalidade, suponhamos a < 0 < b.

Lembre, da aula Propriedades - $Parte\ III\ (módulo\ anterior)$, que os pontos do segmento AB são da forma

$$X_t = ((1-t)a + tb, (1-t)ma^2 + tmb^2),$$

para $0 \le t \le 1$. Então, o possível valor t_0 de t permitindo a igualdade $X_{t_0} = F$ deve satisfazer $(1 - t_0)a + t_0b = 0$, logo, $t_0 = -a/(b-a)$. Note que, por nossas escolhas, $t_0 > 0$ e $1 - t_0 = b/(b-a) > 0$, isto é, $t_0 \in (0,1)$. Além disso,

$$(1-t_0)ma^2 + t_0mb^2 = \frac{b}{b-a} \cdot ma^2 - \frac{a}{b-a} \cdot mb^2$$

$$= \frac{(ba^2 - ab^2)m}{b-a} = \frac{ab(a-b)m}{b-a}$$

$$= -abm = \frac{1}{4m},$$

ou seja, $X_{t_0} = F$ e, portanto, $F \in AB$.

П

Observação 9. Nas notações do exemplo anterior, \overrightarrow{ABP} é um triângulo retângulo em P. De fato, as retas \overrightarrow{PA} e \overrightarrow{PB} têm inclinações 1/2a e 1/2b, respectivamente. Como $\frac{1}{2a} \cdot \frac{1}{2b} = -1$, seque a afirmação.

Exemplo 10. Sejam $I \subset \mathbb{R}$ um intervalo $e \ f: I \to \mathbb{R}$ uma função derivável com a seguinte propriedade: as retas normais ao gráfico de f passam todas por um mesmo ponto do plano. Mostre que o gráfico de f é um arco de circunferência.

Solução. Transladando os eixos, se necessário, podemos supor que o ponto no qual as normais ao gráfico de f concorrem é a origem (0,0). Assim, espera-se que o gráfico de f esteja contido numa circunferência centrada na origem, suspeita que será confirmada se provarmos que a distância do ponto (x,f(x)) sobre o gráfico à origem (0,0), ou seja, a quantidade $\sqrt{x^2 + f(x)^2}$ independe de x (nesse caso, $\sqrt{x^2 + f(x)^2}$ deve ser o raio da circunferência).

Evidentemente, isso equivale a mostrar que a quantidade $x^2 + f(x)^2$ independe de x; também, como sabemos, isso equivale ao anulamento da derivada da função $I \ni x \mapsto x^2 + f(x)^2$.

Pois bem, em cada ponto (x,f(x)) do gráfico, a reta normal tem equação $Y-f(x)=-\frac{1}{f'(x)}(X-x)$. Como essa reta passa pela origem, segue a igualdade $-f(x)=\frac{x}{f'(x)}$, a qual pode ser reescrita na forma

$$x + f(x)f'(x) = 0. (4)$$

O argumento acima funciona apenas no caso em que $f'(x) \neq 0$. Não obstante, mesmo que f'(x) se anule, a igualdade (4) persiste. De fato, nessas circunstâncias, a tangente ao gráfico de f no ponto (x,f(x)) será uma reta horizontal; assim, a normal ao gráfico de f no mesmo ponto será uma reta vertical, passando por (x,f(x)) e pela origem, o que implica x=0 e garante a permanência da validade da relação (4).

Agora, ficou fácil terminar o problema. Realmente,

$$\frac{d(x^2 + f(x)^2)}{dx} = 2(x + f(x)f'(x)) = 0;$$

então, fixando $x_0 \in I \setminus \{0\}$ e definindo $R = \sqrt{x_0^2 + f(x_0)^2}$, obtemos

$$x^2 + f(x)^2 = R^2$$

para todo $x \in I$. Portanto, o gráfico de f está contido na circunferência de raio R com centro na origem.

Dicas para o Professor

Ainda há uma importante regra de derivação a ser estudada, a saber, a $Regra\ da\ Cadeia$. Tal regra, título de um módulo futuro, garante a diferenciabilidade da composição $g \circ f$ de duas funções deriváveis $f \in g$, estabelecendo a relação $(g \circ f)' = (g' \circ f) \cdot f'$. Por exemplo, as fórmulas (1) e (3) são casos particulares dessa regra (verifique).

Duas sessões de 50min devem ser suficientes para expor o conteúdo desse material.

Sugestões de Leitura Complementar

- A. Caminha. Fundamentos de Cálculo. 2ª ed. Rio de Janeiro: SBM, 2022.
- H. L. Guidorizzi. Um Curso de Cálculo, vol. 1. 6^a ed. LTC, 2018.