Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas

Redução ao Primeiro Quadrante

Primeiro Ano do Ensino Médio

Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto

19 de janeiro de 2019

1 Redução ao Primeiro Quadrante

Nó módulo "Círculo Trigonométrico", também do primeiro ano, aprendemos que esse círculo é aquele de raio 1 com centro na origem, o ponto O=(0,0), do plano cartesiano. Consideramos o ponto A=(1,0) e, dado um comprimento β de um arco, marcamos o ponto P sobre o círculo trigonométrico tal que \widehat{AP} mede β . Assim fazendo, definimos os números $\cos \beta$ e sen β de tal sorte que

$$P = (\cos \beta, \sin \beta). \tag{1}$$

Note que, aqui, escrevemos simplesmente sen β no lugar de sen (β) , apenas pelo fato de a primeira notação ser mais compacta. Ambas essas notações têm o mesmo significado, mas a primeira deve ser usada com cautela, especialmente em expressões longas, para não haver risco de ambiguidades.

Quando $0 < \beta < \pi/2$, podemos construir um triângulo retângulo com um ângulo interno de medida β radianos e, portanto, com os outros dois ângulos internos medindo $\pi/2$ e $\pi/2 - \beta$ (lembre-se de que $\pi/2$ radianos corresponde a 90°).

Conforme estudado no módulo "Razões Trigonométricas no Triângulo Retângulo: Seno, Cosseno e Tangente" do Nono Ano do EF, em um tal triângulo temos:

$$\begin{split} & \operatorname{sen}\beta = \frac{\operatorname{medida} \text{ do cateto oposto a }\beta}{\operatorname{medida} \text{ da hipotenusa}}, \\ & \cos\beta = \frac{\operatorname{medida} \text{ do cateto adjacente a }\beta}{\operatorname{medida} \text{ da hipotenusa}}, \\ & \operatorname{tg}\beta = \frac{\operatorname{medida} \text{ do cateto oposto a }\beta}{\operatorname{medida} \text{ do cateto adjacente a }\beta}. \end{split}$$

Ademais, se escolhermos tal triângulo de modo que a medida de sua hipotenusa seja igual a 1, teremos sen β e cos β como as medidas do cateto oposto e do cateto adjacente a β , respectivamente. A Figura ??, mostra como escolher tal triângulo fazendo com que sua hipotenusa coincida com um raio do círculo trigonométrico.

Contudo, quando β não pertence ao intervalo aberto $\left(0,\frac{\pi}{2}\right)$, não existe triângulo retângulo com um ângulo interno de medida β radianos. Neste caso, podemos usar a técnica de redução ao primeiro quadrante para calcular o seno, o cosseno e a tangente de β . Essa técnica já foi esboçada no módulo Círculo Trigonométrico, mas a repetiremos aqui adicionando mais detalhes e exemplos. A ideia é, a partir de β , obter um certo ângulo α entre 0 e $\pi/2$ e relacionar os valores de sen β e cos β com os de sen α e cos α .

Lembre-se de que os eixos do plano cartesiano dividem o Círculo Trigonométrico em quatro partes. Cada parte é denominada um *quadrante* e, por convenção, os quadrantes são numerados de I até IV (um até quatro em algarismos

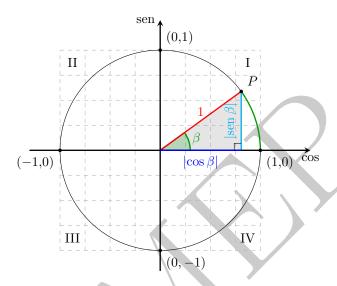


Figura 1: seno e cosseno no primeiro quadrante.

romanos, respectivamente) em sentido anti-horário, sendo o primeiro quadrante aquele formado pelos pontos em que ambas as coordenadas são positivas (veja os numerais I, II, III, IV na Figura ??).

Sem perda da generalidade, assuma que $0 < \beta < 2\pi$. (Não sendo esse o caso, podemos substituir β por sua menor determinação positiva, conforme estudado na primeira aula do módulo "Círculo Trigonométrico".) Como antes, assuma que $\beta = \widehat{AP}$ e vamos considerar separadamente os casos em que P se encontra em cada um dos quatro quadrantes. Em cada caso, definiremos um ponto Q e tomaremos $\alpha = \widehat{AQ}$. Com uma escolha adequada de Q, teremos

$$|\sin \beta| = \sin \alpha$$
 e $|\cos \beta| = \cos \alpha$.

Observe que podemos encontrar os sinais de sen β e cos β dependendo do quadrante de P.

1.1 Do segundo ao primeiro quadrante

A Figura ?? mostra um exemplo com P no segundo quadrante, isto é, com $\pi/2 < \beta < \pi$. Veja que, neste caso, temos $\cos \beta < 0$ e sen $\beta > 0$. Denotando por B o pé da perpendicular baixada de P ao eixo x, temos

$$\overline{PB} = \operatorname{sen} \beta$$
 e $\overline{OB} = -\cos \beta$.

Vamos escolher o ponto Q como sendo o simétrico de P em relação ao eixo y (veja a Figura $\ref{eq:posterior}$); assim, como $P=(\cos\beta,\sin\beta)$, temos $Q=(-\cos\beta,\sin\beta)$. Por outro lado, sendo $\alpha=\widehat{AQ}$, também temos $Q=(\cos\alpha,\sin\alpha)$. Comparando as duas expressões para as coordenadas do ponto Q, obtemos

$$\operatorname{sen} \beta = \operatorname{sen} \alpha \quad e \quad \cos \beta = -\cos \alpha.$$

Agora, seja B' o pé da perpendicular baixada de Q ao eixo x (observe novamente a Figura $\ref{eq:condition}$). A simetria entre P e Q em relação ao eixo y assegura a simetria de B e B' em relação ao mesmo eixo, de modo que os triângulos OPB e OQB' são congruentes, pelo caso "lado, lado, lado". Logo, $P\widehat{OB} = Q\widehat{OB}'$. Por outro lado, $P\widehat{OB} = \pi - \beta$. Portanto.

$$\alpha = \widehat{AQ} = \widehat{QOB'} = \widehat{POB} = \pi - \beta.$$

Substituindo essa expressão para α nas expressões que relacionam sen α com sen β e cos α com cos β , concluímos que

$$\operatorname{sen} \beta = \operatorname{sen}(\pi - \beta)$$
 e $\cos \beta = -\cos(\pi - \beta)$. (2)

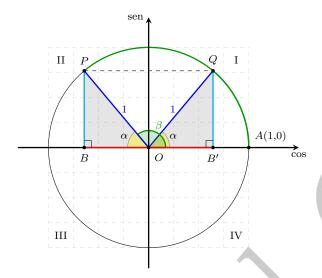


Figura 2: seno e cosseno no segundo quadrante.

Observação 1. É possível mostrar que as equações em (??) são válidas para qualquer valor de β (contudo, apenas no caso em β está no segundo quadrante é que temos $\pi - \beta$ situado no primeiro quadrante).

A partir das fórmulas (??) e levando em consideração a observação acima, temos também

$$tg \beta = \frac{\sin \beta}{\cos \beta} = \frac{\sin(\pi - \beta)}{-\cos(\pi - \beta)} = -tg(\pi - \beta),$$

para todo valor de β tal que $\cos \beta \neq 0$.

1.2 Do terceiro ao primeiro quadrante

A Figura ?? mostra um exemplo com P no terceiro quadrante, isto é, com $\pi < \beta < 3\pi/2$. Assim sendo, temos $\cos \beta < 0$ e sen $\beta < 0$. Logo, para o ponto B como antes (isto é, para B sendo o pé da perpendicular baixada de P ao eixo x), temos

$$\overline{PB} = -\sin\beta$$
 e $\overline{OB} = -\cos\beta$.

Desta vez, vamos escolher Q como sendo o simétrico de P em relação à origem O do plano cartesiano (veja a Figura $\ref{eq:cos}$). Em particular, Q pertence ao primeiro quadrante e os pontos P, O e Q são colineares. Assim, como $P=(\cos\beta, \sin\beta)$, temos que $Q=(-\cos\beta, -\sin\beta)$. Agora, sendo $\alpha=\widehat{AQ}$, também podemos escrever $Q=(\cos\alpha, \sin\alpha)$. Comparando novamente as duas expressões acima para as coordenadas de Q, obtemos

$$\operatorname{sen} \beta = -\operatorname{sen} \alpha$$
 e $\cos \beta = -\cos \alpha$.

Também como antes, seja B' o pé da perpendicular de Q traçada ao eixo x. Veja que $P\widehat{O}B = Q\widehat{O}B'$, pois estes são ângulos opostos pelos vértice. Por outro lado, $P\widehat{O}B = \beta - \pi$, de sorte que

$$\alpha = \widehat{AQ} = P\widehat{OB} = \beta - \pi.$$

Substituindo essa expressão para α nas relações entre sen α , sen β e cos α , cos β , chegamos a

$$\operatorname{sen} \beta = \operatorname{sen}(\beta - \pi)$$
 e $\cos \beta = -\cos(\beta - \pi)$. (3)

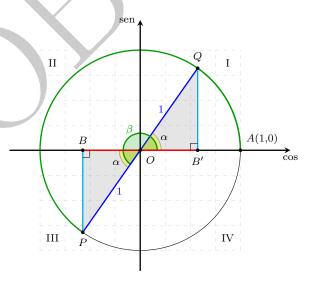


Figura 3: seno e cosseno no terceiro quadrante.

Temos também que

$$tg \beta = \frac{sen \beta}{cos \beta} = \frac{-sen(\beta - \pi)}{-cos(\beta - \pi)} = tg(\beta - \pi).$$

Uma vez que $\beta = \pi + \alpha$, isso também equivale a

$$tg(\pi + \alpha) = tg(\alpha)$$
.

Observação 2. O argumento deste caso é essencialmente o mesmo do caso anterior. Porém, o fato de P estar no terceiro quadrante faz com que os sinais de sen β e $\cos \beta$ sejam diferentes comparados ao caso anterior, assim como a relação entre β e α é diferente.

Também é possível mostrar que as equações em (??), assim como a relação entre $tg \alpha$ e $tg \beta$ são válidas para qualquer valor de β (a última delas contanto que $\cos \beta \neq 0$. Mas, apenas no caso em β está no terceiro quadrante, temos que $\beta - \pi$ está no primeiro quadrante.

1.3 Do quarto ao primeiro quadrante

Como último caso, a Figura ?? mostra um exemplo com P no quarto quadrante, isto é, com $3\pi/2 < \beta < 2\pi$. Veja que, desta feita, temos $\cos \beta > 0$ e sen $\beta < 0$. Logo, definindo o ponto B como antes, temos

$$\overline{PB} = -\operatorname{sen}\beta$$
 e $\overline{OB} = \cos\beta$.

Escolhendo o ponto Q como o simétrico de P em relação ao eixo x (veja a Figura $\ref{eq:posterior}$), temos Q situado no primeiro quadrante. Ainda pela simetria, juntamente com o fato de que $P=(\cos\beta, \sin\beta)$, obtemos $Q=(\cos\beta, -\sin\beta)$. Por outro lado, sendo $\alpha=\widehat{AQ}$, também temos $Q=(\cos\alpha, \sin\alpha)$. Assim, comparando as duas expressões para as coordenadas de Q, vem

$$\operatorname{sen} \beta = -\operatorname{sen} \alpha$$
 e $\cos \beta = \cos \alpha$.

Neste caso, o pé B' da perpendicular baixada de Q ao eixo x coincide com o ponto B. Então, os triângulos OPB e OQB são congruentes pelo caso "lado, lado, lado", de sorte que $P\widehat{OB} = Q\widehat{OB}$.

Por outro lado, $POB = 2\pi - \beta$. Portanto,

$$\alpha = \widehat{AQ} = Q\widehat{O}B = P\widehat{O}B = 2\pi - \beta.$$

Concluímos, pois, que

$$\operatorname{sen} \beta = -\operatorname{sen}(2\pi - \beta)$$
 e $\cos \beta = \cos(2\pi - \beta)$. (4)

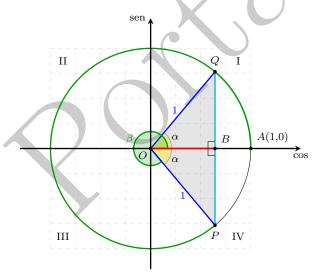


Figura 4: seno e cosseno no quarto quadrante.

Temos também que

$$tg \beta = \frac{\sin \beta}{\cos \beta} = \frac{-\sin(2\pi - \beta)}{\cos(2\pi - \beta)} = -tg(2\pi - \beta).$$

Observação 3. Como nos outros casos, as equações em (??) também valem para qualquer arco β (no caso da tagente, contanto que $\cos \beta \neq 0$. Contudo, o caso em que β está no terceiro quadrante é interessante pois $2\pi - \beta$ está no primeiro quadrante.

Antes de examinarmos alguns exercícios, cumpre traduzirmos as fórmulas obtidas nas subseções anteriores, de radianos para graus. Fazemos isto no exemplo a seguir.

Exemplo 4. Traduza de radianos para graus as relações (??), (??) e (??) obtidas nas subseções acima.

Solução. Lembre-se de que π radianos equivalem a 180°. Assim, para β no segundo quadrante temos, em graus, $90^{\circ} < \beta < 180^{\circ}$. Ao reduzir ao primeiro quadrante, escolhemos $\alpha = 180^{\circ} - \beta$, de modo que

$$\operatorname{sen} \beta = \operatorname{sen}(180^{\circ} - \beta)$$
 e $\cos \beta = -\cos(180^{\circ} - \beta)$.

Quando β está no terceiro quadrante, temos em graus que $180^{\circ} < \beta < 270^{\circ}$. Neste caso, $\alpha = \beta - 180^{\circ}$ está no primeiro quadrante e satisfaz

$$\operatorname{sen} \beta = -\operatorname{sen}(\beta - 180^{\circ})$$
 e $\cos \beta = -\cos(\beta - 180^{\circ})$.

Por fim, quando β está no quarto quadrante, temos em graus que 270° < β < 360°. Também, o arco α = 360° – β está no primeiro quadrante e satisfaz

$$\operatorname{sen} \beta = -\operatorname{sen}(360^{\circ} - \beta)$$
 e $\cos \beta = \cos(360^{\circ} - \beta)$.

2 Exercícios

Para os exercícios seguintes sugerimos que, antes de ler suas soluções, o leitor desenhe os ângulos envolvidos sobre o Círculo Trigonométrico e use as devidas simetrias, no lugar de simplesmente utilizar as fórmulas apresentadas na seção anterior. Abaixo, relembramos os valores do seno, cosseno e tangente de alguns ângulos notáveis.

Ângulo (graus)	${ m \hat{A}ngulo} \ m (radianos)$	sen	cos	tg
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$rac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	7

Exemplo 5. Calcule os valores de sen 120° e cos 120°.

Solução. Veja que 120° pertence ao segundo quadrante, pois 90° < 120° < 180°. Assim, de acordo com a Figura ??, ao reduzir 120° para o primeiro quadrante, obtemos um ângulo de 60°. De acordo com a tabela anterior, sen $60^\circ = \sqrt{3}/2$ e $\cos 60^\circ = 1/2$. Mas, como $\sin 120^\circ > 0$ e $\cos 120^\circ < 0$, temos que:

$$\sin 120^\circ = \sin 60^\circ = \frac{\sqrt{3}}{2}$$

е

$$\cos 120^\circ = -\cos 60^\circ = -\frac{1}{2}.$$

Exemplo 6. Calcule os valores de $sen(5\pi/6)$ e $cos(5\pi/6)$.

Solução. Veja que $5\pi/6$ pertence ao segundo quadrante, pois está entre $\pi/2$ e π . Como no problema anterior, observando a Figura \ref{figura} , reduzimos esse arco ao arco do primeiro quadrante $\pi-5\pi/6=\pi/6$. Por outro lado, sabemos que $\sin(\pi/6)=1/2$ e $\cos(\pi/6)=\sqrt{3}/2$. Então, como $\sin(5\pi/6)>0$ e $\cos(5\pi/6)<0$, temos:

$$sen(5\pi/6) = \frac{1}{2}$$
 e $cos(5\pi/6) = -\frac{\sqrt{3}}{2}$.

Exemplo 7. Qual o valor de $tg(5\pi/4)$?

Solução. Veja que $\pi < 5\pi/4 < 3\pi/2$, logo, $5\pi/4$ pertence ao terceiro quadrante; então, $tg(5\pi/4) > 0$. De acordo com Figura ??, ao reduzir $5\pi/4$ ao primeiro quadrante, obtemos $\alpha = 5\pi/4 - \pi = \pi/4$. Logo,

$$tg(5\pi/4) = tg(\pi/4) = 1.$$

Exemplo 8. Encontre o ângulo α tal que $0^{\circ} \leq \alpha < 360^{\circ}$,

$$sen \alpha = -sen 216^{\circ}$$
 $eouthered{e}$
 $cos \alpha = cos 216^{\circ}$

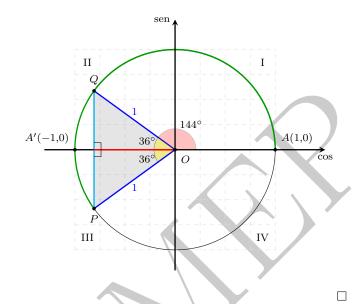
Solução. Essa pergunta é diferente das anteriores, mas podemos atacá-la de maneira similar. Primeiro, vamos identificar o quadrante de 216°. Como 180° < 216° < 270°, temos sen(216) < 0 e cos(216) < 0. Então, as igualdades do enunciado garantem que sen(α) > 0 e cos(α) < 0. Isso, juntamente com 0° ≤ α < 360°, indica que α pertence ao segundo quadrante.

Sejam $A=(1,0),\ A'=(-1,0)$ e P o ponto do Círculo Trigonométrico tal que $A\widehat{O}P=216^\circ$ (com o arco \widehat{AP} medido no sentido anti-horário, de A para P). Agora, observe que a redução de 216° ao primeiro quadrante é $216^\circ-180^\circ=36^\circ$.

A fim de obter o ponto do segundo quadrante correspondente a α , tomemos Q como o simétrico de P em relação ao eixo x (veja a figura a seguir). Temos que $Q\widehat{O}A' = A'\widehat{O}P = 36^{\circ}$. Daí, $A\widehat{O}Q = 180^{\circ} - 36^{\circ} = 144^{\circ}$.

Por fim, veja que $\alpha=144^\circ$ satisfaz as condições do enunciado, pois

$$\sin 144^{\circ} = -\sin 216^{\circ}$$
 e $\cos 144^{\circ} = \cos 216^{\circ}$.



Exemplo 9. Se $R = \sin 130^{\circ} + \cos 130^{\circ}$. Decida, com justificativa, se R é positivo, negativo ou igual a zero.

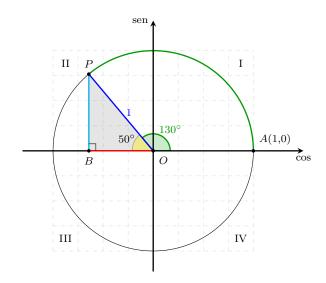
Solução. A figura seguinte nos mostra um ângulo de 130°, juntamente com o arco correspondente sobre o Círculo Trigonométrico. Veja que sen 130° > 0 enquanto que cos 130° < 0. Se B é o pé da perpendicular de P traçada ao eixo x, temos

$$\overline{PB} = \text{sen } 130^{\circ} \quad \text{e} \quad \overline{BO} = -\cos 130^{\circ}.$$

Logo,

$$R = \overline{PB} - \overline{BO}$$
.

No triângulo PBO, temos que $P\widehat{O}B=180^{\circ}-130^{\circ}=50^{\circ}$, de sorte que $B\widehat{P}O=40^{\circ}$. Como o menor lado de um triângulo é o oposto ao seu menor ângulo, concluímos que $\overline{BO}<\overline{PB}$. Logo, R>0.



Exemplo 10. Calcule os valores de sen 1410° , $\cos 1410^{\circ}$ e tg 1410° .

Solução. Neste caso, vamos primeiro calcular a menor determinação positiva de 1410° . Para isso, começamos dividindo 1410 por 360, obtendo

$$1410 = 3 \cdot 360 + 330.$$

Logo, 1410° e 330° são congruentes, de modo que

$$\sin 1410^{\circ} = \sin 330^{\circ}$$
 e $\cos 1410^{\circ} = \cos 330^{\circ}$.

Agora, basta reduzir 330° ao primeiro quadrante. Observando que $270^{\circ} < 330^{\circ} < 360^{\circ}$, vemos que o arco correspondente a 330° pertence ao quarto quadrante. Então, revisitando a Figura ??, vemos que devemos tomar $\alpha = 360^{\circ} - 330^{\circ} = 30^{\circ}$. Dessa forma, segue que

$$sen 1410^{\circ} = sen 330^{\circ} = - sen 30^{\circ} = -\frac{1}{2},$$

$$cos 1410^{\circ} = cos 330^{\circ} = cos 30^{\circ} = \frac{\sqrt{3}}{2}.$$

$$tg 1410^{\circ} = tg 330^{\circ} = - tg 30^{\circ} = -\frac{\sqrt{3}}{3}.$$

Exemplo 11. Lembre-se de que arcos complementares são aqueles cuja soma é igual a $\pi/2$ e suplementares são aqueles cuja soma é igual a π . Sabendo que α e β são complementares e que β e γ são suplementares, com $\cos \gamma \neq 0$, calcule a razão entre sen α e $\cos \gamma$.

Solução. Como α e β são complementares, temos que $\alpha + \beta = \frac{\pi}{2}$. No Módulo "Círculo Trigonométrico" vimos que isso implica que sen $\alpha = \cos \beta$.

Agora, β e γ satisfazem $\beta+\gamma=\pi$, de sorte que (??) fornece $\cos\beta=-\cos\gamma$. Então, $\sin\alpha=-\cos\gamma$ e a razão pedida é igual a

$$\frac{\operatorname{sen}\alpha}{\cos\gamma} = \frac{\operatorname{sen}\alpha}{-\operatorname{sen}\alpha} = -1.$$

Exemplo 12. Sabendo que sen $\alpha = 3/5$ e que α pertence ao segundo quadrante, calcule os valores de cos α e tg α .

Solução. Recordemos que, pela relação fundamental, tem-se

$$\sin^2 \alpha + \cos^2 \alpha = 1.$$

Logo,

$$\left(\frac{3}{5}\right)^2 + \cos^2 \alpha = 1 \implies \cos^2 \alpha = 1 - \frac{9}{25} = \frac{16}{25}.$$

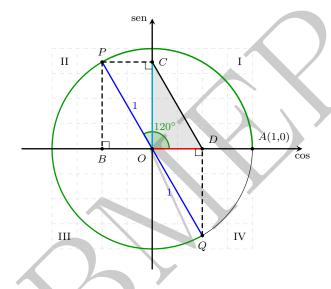
Como α pertence ao segundo quadrante, temos $\cos \alpha < 0$. Assim,

$$\cos\alpha = -\sqrt{\frac{16}{25}} = -\frac{4}{5}.$$

Por fim, temos

$$tg \alpha = \frac{3/5}{-4/5} = -\frac{3}{4}.$$

Exemplo 13. Na figura a seguir, temos um círculo de raio 1, com centro em O, e sabemos que os pontos P, O e Q são colineares. Sabendo que o arco trigonométrico \widehat{AP} mede $2\pi/3$ radianos, calcule a área do triângulo OCD.



Solução 1. Inicialmente, observe que $2\pi/3$ radianos correspondem a 120° . Então, temos

$$\overline{OC} = |\text{sen}(120^{\circ})|$$
 e $\overline{OB} = |\cos(120^{\circ})|$.

Conforme calculado no Exemplo ??, tais igualdades fornecem

$$\overline{OC} = \frac{\sqrt{3}}{2}$$
 e $\overline{OB} = \frac{1}{2}$.

Como $P,\ O$ e Q são colineares, temos $P\widehat{O}B = D\widehat{O}Q$, pois são opostos pelo vértice. Consequentemente, seus complementos também são iguais, isto é, $B\widehat{P}O = D\widehat{Q}O$. Mas, como $\overline{PO} = \overline{QO}$, segue que os triângulos OPB e QOD são congruentes, pelo caso "ângulo, lado, ângulo". Logo, $\overline{OD} = \overline{OB}$.

Assim, a área do triângulo OCD é igual a:

$$\frac{1}{2} \cdot \overline{OC} \cdot \overline{OD} = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{8}.$$

Solução 2. Temos $\widehat{COP} = 120^{\circ} - 90^{\circ} = 30^{\circ}$. Como $\overline{OP} = 1$, observando o triângulo COP temos

$$\overline{PC} = \sin 30^{\circ}$$
 e $\overline{OC} = \cos 30^{\circ}$.

Logo,

$$\overline{PC} = \frac{1}{2}$$
 e $\overline{OC} = \frac{\sqrt{3}}{2}$.

Como na solução anterior, concluímos que os triângulos COP e DOQ são congruentes. Então, $\overline{OD} = \overline{PC}$ e podemos calcular a área de OCD da mesma forma que na primeira solução.

Exemplo 14. Sabendo que α , β e γ são os ângulos de um triângulo não retângulo, calcule o valor numérico da expressão

$$R = \frac{\operatorname{sen}(\alpha + \beta)}{\operatorname{sen} \gamma} + \operatorname{tg}(\alpha + \beta + 2\gamma)\operatorname{ctg}(\alpha + \beta)$$

Solução. Temos que $\alpha + \beta + \gamma = \pi$. Logo,

$$sen(\alpha + \beta) = sen(\pi - \gamma) = sen \gamma$$

e, daí,

$$\frac{\operatorname{sen}(\alpha+\beta)}{\operatorname{sen}\gamma} = \frac{\operatorname{sen}\gamma}{\operatorname{sen}\gamma} = 1.$$

Por outro lado,

$$tg(\alpha + \beta + 2\gamma) = tg(\pi + \gamma) = tg\gamma$$

ao passo que

$$\operatorname{ctg}(\alpha + \beta) = \frac{1}{\operatorname{tg}(\alpha + \beta)} = \frac{1}{\operatorname{tg}(\pi - \gamma)} = \frac{1}{-\operatorname{tg}\gamma}.$$

(Note que os cálculos acima têm sentido, uma vez que $\gamma\neq90^\circ\Rightarrow\cos\gamma\neq0$.) Combinando os dois últimos resultados, temos que

$$tg(\alpha + \beta + 2\gamma) ctg(\alpha + \beta) = \frac{tg \gamma}{-tg \gamma} = -1.$$

Então, a expressão do enunciado vale

$$R = 1 - 1 = 0.$$

Dicas para o Professor

Este módulo tem como pré-requisitos o bom entendimento das noções geométricas de simetria (em relação a uma reta ou a um ponto) e conhecimentos básicos sobre congruência de triângulos. É imprescindível fazer várias figuras e exemplos para que a redução ao primeiro quadrante se torne natural. Observe que as escolhas do ângulo α em função de β , feitas na Seção $\ref{eq:constraint}$, são consequências naturais das simetrias encontradas. Por isso, melhor do que memorizar as relações $\ref{eq:constraint}$, $\ref{eq:constraint}$ é sempre tentar visualizá-las. De toda forma, após usá-las várias vezes, elas acabarão sendo memorizadas.

Recomendamos que o professor aborde o conteúdo desta aula em dois ou três encontros de 50 minutos. A referência [1] desenvolve os rudimentos de Trigonometria necessários a aplicações geométricas. A referência [2] traz um curso completo de Trigonometria.

Sugestões de Leitura Complementar

- A. Caminha. Tópicos de Matemática Elementar, Volume 2: Geometria Euclidiana Plana. SBM, Rio de Janeiro, 2013.
- G. Iezzi Os Fundamentos da Matemática Elementar, Volume 3: Trigonometria. Atual Editora, Rio de Janeiro, 2013.