

2º Encontro

Aula 2:4 horas

Data 25/06/2016

Conteúdos:

Contagem

Material:

- Métodos de Contagem e Probabilidade, capítulo 1
- O Princípio Fundamental da Contagem

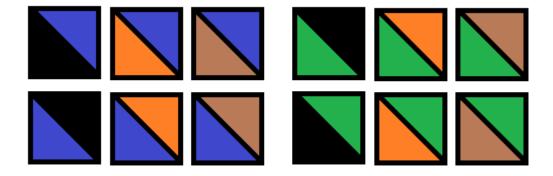
- 1) No caso deste problema uma forma natural para planejar como pintar os triângulos são:
- Escolher a cor a ser utilizada no triangulo de cima
- A seguir escolher a cor para o triangulo de baixo

A primeira decisão pode ser feita de 2 maneiras (verde ou azul), uma vez tomada a decisão, listamos as 3 possibilidades para a segunda decisão(preto, laranja ou marrom).

*Supondo que escolhemos azul primeiro:

Note que

Logo teremos as seguintes possibilidades:



• Isto é, a cor de cima pode ser escolhida de 2 modos, a de baixo de 3 modos e podemos ordená-las de 2 formas, pelo princípio multiplicativo:

$$2 \times 3 \times 2 = 12$$

1º decisão: escolher um menino(2 modos)

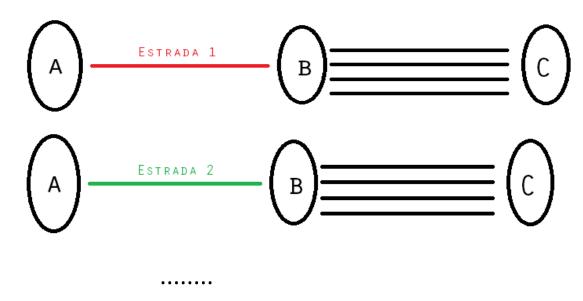
2ª decisão: escolher uma menina(3 modos)



Pelo principio multiplicativo:

$$2 \times 3 = 6$$

A primeira decisão é escolher uma das estradas de A para B (6 modos) Em seguida escolher de B para C (4 modos):



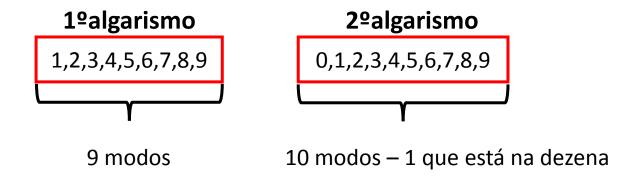
Assim, até a estrada 6 teremos pelo principio multiplicativo:

$$6 \times 4 = 24$$

possibilidades

4) Note que no primeiro algarismo (dezena) pode ser escolhido de 9 modos, pois não pode ser igual a zero.

O segundo algarismo pode ser escolhido de 9 modos, pois não pode ser igual ao primeiro algarismo, pois pede que sejam **distintos**.



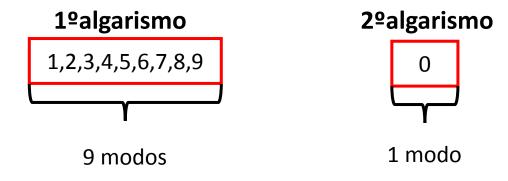
Isto é:

$$9 \times 9 = 81$$
 números

5) Observe que para um número ser par deve ser terminado em 0, 2, 4, 6, 8, logo temos 5 modos para a casa da unidade.

Temos dois casos a considerar:

1ºcaso: Se for terminado em zero.



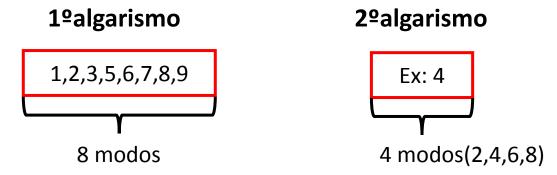
Isto é:

$$9 \times 1 = 9$$

2ºcaso: Se não for terminado em zero.

Escolha um número de sua preferencia para fixar no 2º algarismo (Ex:4).

Observe que teremos apenas 8 modos para o 1ºalgarismo, pois não poderá ser zero e nem o número que foi escolhido para o 2º algarismo.



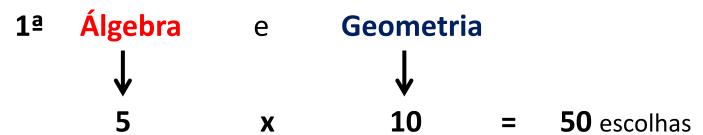
Isto é:

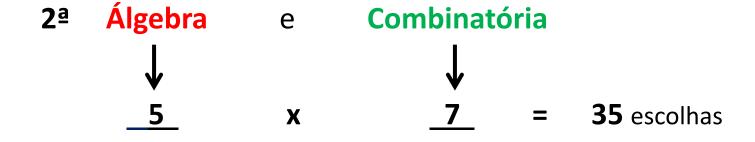
$$8 \times 4 = 32$$

Portanto pelo princípio aditivo o total será:

$$9 + 32 = 41$$

6) Podemos selecionar de três maneiras:





Pelo princípio aditivo temos:

Total de escolhas:

$$50 + 35 + 70 = 155$$
 escolhas

a) 4 alunos(Alice, Bernardo, Carolina e Daniel)

Líder	Vice-líder
Alice	Bernardo
Alice	Carolina
Alice	Daniel
Bernardo	Alice
Bernardo	Carolina
Bernardo	Daniel
Carolina	Alice
Carolina	Bernardo
Carolina	Daniel
Daniel	Alice
Daniel	Bernardo
Daniel	Carolina

b) Pelo princípio multiplicativo temos:

Assim o número total de maneiras é

$$p.q = 4 \times 3 = 12$$

8) 5 jogadores:

Capitão	Vice-capitão
Jogador 1	Jogador 2
Jogador 1	Jogador 3
Jogador 1	Jogador 4
Jogador 1	Jogador 5
Jogador 2	Jogador 1
Jogador 2	Jogador 3
Jogador 2	Jogador 4
Jogador 2	Jogador 5
Jogador 3	Jogador 1
Jogador 3	Jogador 2

Capitão	Vice-capitão
Jogador 3	Jogador 4
Jogador 3	Jogador 5
Jogador 4	Jogador 1
Jogador 4	Jogador 2
Jogador 4	Jogador 3
Jogador 4	Jogador 5
Jogador 5	Jogador 1
Jogador 5	Jogador 2
Jogador 5	Jogador 3
Jogador 5	Jogador 4

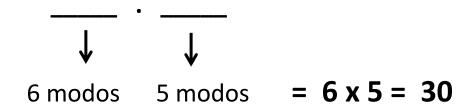
b) Pelo princípio multiplicativo temos:

Assim o número total de maneiras é

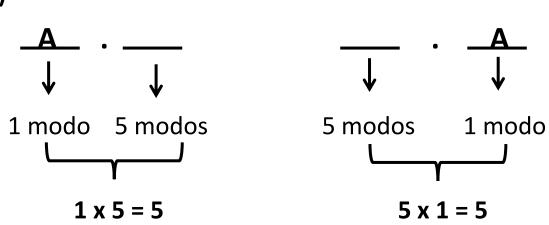
$$p.q = 5 \times 4 = 20$$

A, B, C, D, E, F

a)



b)

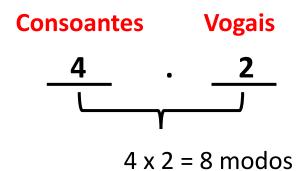


Pelo princípio aditivo:

$$5 + 5 = 10$$

c)

A, B, C, D, E, F



- **10)** 11 jogadores
- a) Pelo princípio multiplicativo temos:

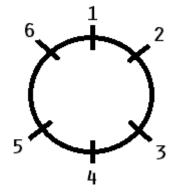
Assim o número total de maneiras é

$$p.q = 11 \times 10 = 110$$

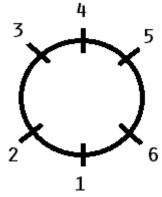
b) Neste caso seria muito trabalhoso listar, logo a melhor maneira é utilizar o princípio multiplicativo.

- **12)** Funcionários: Sara, Iná, Ester, Ema, Ana, Inácio
- a) $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 6! = 720$
- **b)** Observe que as posições abaixo embora sejam diferentes em linha, são iguais em circulo.

123456



456123



Portanto temos as mesmas posições que em linhas, porém sem estas repetições, o que nos resulta em:

$$\frac{6!}{6} = \frac{6.5.4.3.2.1}{6} = 5! = 5.4.3.2.1 = 120$$

c) Presidente Vice-presidente Suplente

6 . 5

. 4 = 120

a) Porta voz

Diretor de Artes Assessor técnico

10

8

720

b) Leandro, Renato e Marcelo

Porta voz

Diretor de Artes Assessor técnico

6

c) Pelo item a) podemos observar que a comissão com cargos específicos pode ser formada de 720 maneiras. E pelo item b) vemos que três pessoas podem formar 6 comissões diferentes, isto é:

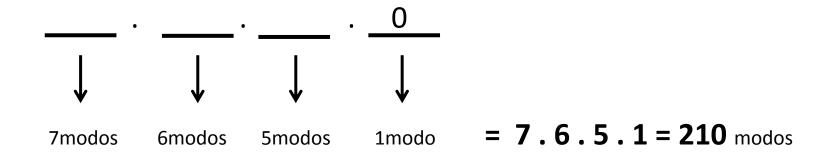
14) 0, 1, 2, 3, 4, 5, 6, 7

Observe que para um número ser par deve ser terminado em 0, 2, 4, 6 logo temos 4 modos para a casa da unidade.

Temos dois casos a considerar:

1ºcaso: Se for terminado em zero.

Observe que na primeira casa podemos colocar (1,2,3,4,5,6,7), na segunda casa não podemos colocar o zero que está na ultima casa e nem o número que colocarmos na primeira casa, análogo a terceira casa, isto é,



2ºcaso: Se não for terminado em zero.

Observe que teremos 3 modos para a última casa(2, 4 e 6), escolhendo um destes nos restarão 6 números para a primeira casa, pois não podemos colocar o zero na primeira casa, e na segunda casa não podemos colocar o número que está na primeira, nem o que está na última, mas podemos colocar o zero, logo são 6 modos, análogo a terceira casa, isto é,

